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ABSTRACT 
Discovering Gene Regulatory Network (GRN) gives some idea about gene pathways 

and helps many potential applications in medicine. The essential source of data for this 

task is the gene expression data. High complexity and poor quality of gene expression data 

acquired by high throughput methods like microarray provide many difficulties in the 

context of the current issue. A promising method for evaluating gene expression noisy 

data to characterize processes made up of locally interacting components is Bayesian 

Network. In fact, because of the intricacy of the inputs and results of the cellular 

mechanism, inferring GRN from expression data presents numerous difficulties. This 

work proposes a new approach for inferring GRNs from time series gene expression data. 

The present work extends the existing Bayesian Network methods to include the 

regulation properties of genes to improve the process of capturing natural classes during 

inferring the relations between genes. The proposed approach is evaluated in comparing to 

the corresponding techniques of the related works, and the results show the ability of the 

present approach is efficient to some level to deal with such high dimensional data even 

without dimension reduction, but in the presence of regulatory information.  

 

Keywords:  Gene Regulatory Network, Gene expression, Bayesian network, Gene 

Regulation Ontology 

 

1 INTRODUCTION 

Gene Regulatory Network (GRN) is known as a 

group of genes that indirectly regulate the activity rates 

of each other through their protein or RNA products [1]. 

Discovering and understanding this regulation processes 

that underlie the vital operations of human disease is one 

of the major goals in bioinformatics. This understanding 

gives some idea about gene pathways and helps many 

potential applications in medicine. Drug discovery and 

toxicology analysis are the most important examples of 

these applications in addition to complex genetic 

diseases [2].  
The Gene Ontology (GO) is a biological repository 

specific to genes. It is designed to encapsulate the known 
relationships between biological terms and all genes that 
are related to these terms [3]. An expanded version of 
GO's proposed framework for the field of gene 

regulation is the Gene Regulation Ontology (GRO). GO 
displays the common knowledge about gene regulation 
in extremely fine-grained classes whereby using (GRO) 
the common knowledge for gene regulation is 
represented in a formal manner [4]. A significant new 
tool for measuring the gene expression profile of known 
coding sequences in a particular tissue and time point is 
microarray innovation. The recent advances of this 
technology help to propose many approaches to infer the 
gene networks from these experimental data [1].  

Many computational methods are developed to 
support the GRN inferring from many types of biological 
data and the analysis of GRN functionality. Recently an 
increasing interest in constructing GRN using gene 
expression profiles is growing. Data mining is one of 
many techniques that try to do that. In order to predict 
regulatory networks from gene expression patterns, a 
variety of algorithms, including Bayesian network 
algorithms [1], neural networks [2], and Boolean 
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networks [2], are utilized.  In general, there are two 
approaches to build and model GRN, the first approach 
is based on finding the master regulators set of GRN and 
obtaining GRN. Then, a mathematical model is 
employed to help in clarifying the possible regulatory 
mechanism. This method requires a lot of time and is 
susceptible to human mistakes in data analysis and 
interpretation. The second approach is based on applying 
bioinformatics techniques using genomics data to 
conclude GRNs. These information methods are suitable 
to draw an overview about the general structure of gene-
gene interactions. 

 
However, the traditional bioinformatics techniques 

that are used to infer GRN cannot be constructed as a 

part of an integrated/enterprise functional dynamical 

system. Therefore, a combination between 

bioinformatical tools and mathematical modeling tools to 

employ genome databases with the gene expression data 

(GED) for constructing GRN is needed. This 

combination aids to discover existing interactions 

between genes and reveal the regulatory interactions in 

specific cell types or experimental samples. As decided 

in many previous works, Bayesian network is a 

promising technique to analyze gene expression noisy 

data. The present work introduces a new method that 

modifies Bayesian network to use gene regulation 

properties that can be retrieved from GRO with gene 

expression profiles to improve the performance of 

Bayesian Network (BN) method which is used by the 

most related work in [4]. This research proposes the use 

of a Bayesian network to infer a GRN from gene 

expression data using an intelligent computational 

system called Gat2Get. 

The remainder of this article is structured as follows: 
The problem that the current work tries to solve is 
defined in section 2. A background  about GRN, and 
microarray methodologies, Gene regulatory ontology 
and Bayesian network learning technique is provided in 
section 3. The related works of our approach are 
presented in section 4 surveys related works. Section 5 
presents the proposed approach and the data used. 
Section 6 shows the experimental amongst these 
methods, while Section 7 discusses the results. Finally, 
Section 8 presents conclusions as well as several 
recommendations for further research. 

2 PROBLEM DEFINITION 

Numerous gene expression levels are measured in 

microarray research under various settings or samples. A 

matrix of actual values serves as the representation for 

the gene expression set (Figure 1). M =          

          where the rows (  
   ⃗⃗⃗⃗       ⃗⃗⃗⃗           the genes activities, the columns 

(     ⃗⃗  ⃗      ⃗⃗⃗⃗      defined the expression outlines of 

samples, and every cell Xij is the evaluated expression 

level of gene i in sample j. Where, p is genes, n is 

number of time series samples,    is a gene vector,     is a 

sample vector. 

 

Figure 1. A gene activity matrix (edited from[4]). 

Using these expression data, this work needs to infer 

GRN standing to fact that the number of expressed gene 

in a specific tissue is enhanced or inhibited (increased or 

decreased) by the effect of the products of other genes 

(Figure 2). Here, this work needs to see if vice versa is 

true. The authors need to know how accurately gene 

regulation network can be predicted based on its gene 

expression profiles. 

 

Figure 2: Graphical view of GRN (edited from [3]) 

For two genes W and Z, the common data of X and Y 

can be expressed  as in Eq. 1 [2] where  (   and  (   

are the entropy of the random values of w and z, 

respectively;  (     is the joint entropy of w and z. 

 (       (     (     (      (1) 

 (   can be computed as in equation 2 [2],  

where p(w) is the probability that the W takes x:  

 (      ∑  (      (       (2) 

The joint entropy of W and Z is represented by 

equation 3 [2], where p(w, z) is probability of W and Y: 

 (        ∑  (        (            (3) 

In general, the process of inferring GRN is a complex 

task due to the complex nature by which genes interact 

with each other. This complexity nonlinear increases in 

case of using expression data which is huge and noisy 

data. 

We attempt to reflect the light on the analysis of 

high-throughput gene expression data from two distinct 

domains in this work: gene expression and gene 

regulation ontology. Bayesian network as a promising 

data mining technique is the most suitable method to 

deal with this type of data source. But there is a need to 

improve its results in terms of accuracy and the quality 
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of the resulting GRN. This work introduces a new 

approach for mining gene regulation network based on 

quantitative analysis of gene expression. This work 

claims that extending the Bayesian Network technique to 

include gene regulation properties will improve the 

performance and the accuracy of results. 

This work proposes a novel platform, Gat2Get (gene 

activity to gene regulation network using Bayesian 

network) for inferring GRNs from time series GED. For 

accurate GRN, Gat2Get implements Mutual information 

(MI) to measure the relationship between each two 

related genes for reconstructing GRN. The threshold is 

used to estimate the candidate genes of each target gene. 

Ignoring the low-related genes acts to decrease the 

dimensionality of the data approach. The candidate genes 

are used to estimate the regression factors as regulatory 

forces to reconstruct GRN using Bayesian network. 

3 BACKGROUND 

3.1 GRN and GED  
 

A collection of genes, proteins, small molecules, and 

their interconnections is referred to as the Gene 

Regulatory Network (GRN). Through the production of 

protein and RNA, these connections can either directly 

or indirectly control each other's expression rates.  In 

fact, GRN discovering and understanding these 

regulation processes is one of ultimate goals of 

bioinformatics. This understanding gives some idea 

about gene pathways and helps many potential 

applications in medicine. Drug discovery, and toxicology 

analysis are the most important examples of these 

applications in addition to the complex genetic diseases 

[5]. Gene regulation networks can be modeled as graphs 

(see Figure 3) where Nodes demonstrate the functional 

units (genes, proteins, metabolites, etc.) and Edges 

represent dependencies (represent the molecular 

reactions between the nodes) [6]. 

The traditional techniques of GRN discovery are 

expensive and time-consuming experiments. In fact, 

reverse engineering determines the probable link 

between genes from gene expression data (GED). 

However, such approaches represent a bottleneck that 

restricts the understanding of biological systems. 

Numerous answers to this challenge are provided by 

biotechnology, such as microarray, which counts the 

number of mRNA copies of each known coding 

sequence in a given tissue and time point [6]. The levels 

of mRNA expression in the tissue sampled can be 

determined by a single microarray experiment. The 

absolute expression level in one sample is important, but 

the topic of how expression varies between samples is 

more intriguing. Large-scale transcriptional alterations 

that reflect separate active processes in the various 

circumstances can be found using this type of 

experiment. A gene expression experiment's usual 

dataset contains thousands of genes and dozens of 

conditions (Ament et al., 2018). The challenge here is to 

develop acceptable models that accurately predict the 

interactions between genes from GED [7]. Many modern 

techniques are introduced to employ machine learning 

algorithms, mathematical optimization techniques and 

data mining techniques in inferring GRN from GED. 

 
Figure 3. Graph consisting of 4 nodes and 5 edges.  

The traditional techniques of GRN discovery are 

expensive and time-consuming experiments. In fact, 

reverse engineering determines the probable link 

between genes from gene expression data (GED). 

However, such approaches represent a bottleneck that 

restricts the understanding of biological systems. 

Numerous answers to this challenge are provided by 

biotechnology, such as microarray, which counts the 

number of mRNA copies of each known coding 

sequence in a given tissue and time point [6]. The levels 

of mRNA expression in the tissue sampled can be 

determined by a single microarray experiment. The 

absolute expression level in one sample is important, but 

the topic of how expression varies between samples is 

more intriguing. Large-scale transcriptional alterations 

that reflect separate active processes in the various 

circumstances can be found using this type of 

experiment. A gene expression experiment's usual 

dataset contains thousands of genes and dozens of 

conditions (Ament et al., 2018). The challenge here is to 

develop acceptable models that accurately predict the 

interactions between genes from GED [7]. Many modern 

techniques of bioinformatics are introduced to employ 

machine learning algorithms, mathematical optimization 

techniques and data mining techniques in inferring GRN 

from GED. 
 

According to [4], these techniques are divided into 
two kinds: equation-based techniques and dependence-
based techniques. The first type is the equation-based 
techniques, where GRN is defined using equations to 
catch the interactions between genes using optimization 
methods which effects their ability of parameter 
assessment for the high dimensionality of candidate 
controllers [8]. Various computational techniques are 
proposed to deal with GRN inferring problems, the 
typical methods involve network component analysis, 
linear programming, Bayesian networks and random 
forests. The Bayesian network is based on the joint 
likelihood distribution of GED to organize a directed 
acyclic graph of GRN. With the second type, GRN is 
predicted based on identifying the dependencies among 
genes by determining the linear and nonlinear 
correlations. However, the results of these methods 
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include many redundant links. Examples of this type are 
Pearson correlation coefficient, mutual information (MI), 
and the Granger method [4]. Mutual information (MI) is 
an assessment technique of the relationship between 
genes.  

3.2 The Curse of Dimensionality 

The high dimensionality and noisy characteristics of 
microarray data represent great challenges to scientists 
who attempt to work with these data. These 
characteristics play an important role in determining the 
machine learning algorithms that will be utilized and can 
drive the extension of existing techniques [9]. The high 
dimensionality is one of the chief tasks with microarray 
information. Using a vector to represent a 10,000 gene 
microarray experiment and forcing it to operate in a 
10,000-dimensional space. A method must be able to 
deal with the dimensionality of this feature space 
reliably in order to be effective [10]. 

Microarray data always suffers from a high 
percentage of noise due to technical limitations. Anyone 
wishing to work with this data must normalize it by 
scaling the array results by the suitable parameter due to 
the noise. There is a group of techniques that can be 
applied to fix the bias and inaccuracies caused by 
microarray experiments, like using logarithms to analyze 
and normalize the unnormalized data [11].  

3.3 Gene Regulation Ontology 

Gene Regulation Ontology (GRO) is an extended 
model from Gene Ontology specially for the gene 
regulation domain. It explores processes and entities 
(transcription factors or genes) that are related to the 
gene expression regulation, in terms of ontology classes 
and relations between classes [12]. The GRO terms are 
typically generated from external ontological resource 
such as : Sequence Ontology-SO (sequence regions and 
attributes of sequence regions, such as gene, binding 
site, promoter, DNA, RNA), and Gene Ontology-GO 
(molecular functions, biological processes, cellular 
components, such as regulation of transcription, 
nucleus). 

3.4 Bayesian Network 

A directed acyclic graph (DAG) named G is the 
basis of the probabilistic statistical method known as a 
Bayesian network (BN). G is used to describe the 
probability dependencies. DAG G can be thought of as a 
collection of nodes N and links E that join the nodes. 
BN as a classifier has the capacity to forecast the 
likelihood of class members, i.e., the likelihood that a 
specified set of data is part of a specific class. Ajmal and 
Madden in [1] discuss the Bayesian Network (BN) as a 
straightforward diagram where every node is a data 
member, and each edge denotes a probabilistic 
relationship as (see Figure 3) [11]. 

Given that there is a set classes A1, A2, . . . , Ai  
where the classifier forecasts the class of an unknown 
sample S with the highest posterior probability. This 

means that, S is assigned to class Ai if and only if   

P(Ai|S)>P(Aj|S)  for 1   j   I and j   i.  Bayes 
Theorem implies that: S is assigned to class Ai if and 
only if   P(Ai|S)>P(Aj|S)  for 1   j   i and j   i.  
Bayesian Rule [1]: 

 (     
 (     (  

 (  
    (4) 

The class-conditional probability will be [1] 

 (      
 (      (   

 (  
    (5) 

Where each attribute set S = {s1, sK, … , sn} consists of 

d attributes. The relative frequency of instances with 

value aj as the j
th

 feature in class Ci is approximated as 

P(ajAi) if the i
th

 parameter is classified. If the j
th

 feature 

is uninterrupted, on the other hand, P(ajAi) is often 

approximated using a Gaussian density function. Both 

situations are easily calculable. Compared with other 

classifiers, BN has some advantages: 1- BN is easy to 

generate, as the structure is given a priori. 2- it has a very 

effective classification process. 3- it gives the best 

accuracy and performance in terms of training time. 4- 

can use data with missing values as inputs, during 

classification, In time that decision tree and neural 

network cannot [3]. 

Dynamic Bayesian network (DBN) is a BN which 

introduced a time-variant network in which the present 

situation is affected by the last situation. The distribution 

over n timeslots is expressed by equation 6: 

 (       ∏ ∏  (  
  

   
 
      (  

 )    (6) 

Using DBN, each node at a specific timeslot (t) is 

based on the state of its parent nodes at the preceding 

timeslot (t-1). One gene can be represented by several 

nodes related to the number of its samples on gene 

expression microarray. Here, the states of a gene are 

separated into a number of timeslots during modeling a 

cyclic regulation by DBNs. 

4 THE RELATED WORKS 

A lot of works tried previously to discover GRN 

from the expression data using Bayesian network. They 

were varying in the method of applying Bayesian 

network. The following subsections describe these trials. 

For instance, [13] modified the K2 method and created a 

BN architecture learning algorithm using Friedman's 

scoring function. They evaluated it using the REVEAL 

method to rebuild both artificial and actual yeast 

networks. Friedman's scoring function exhibits greater 

precision and recall when a stationary correlation is 

introduced throughout two successive time slices. They 

concluded that Friedman's score measurements for BN 

may be utilized to recreate transition networks and have 

a significant potential to increase the precision of gene 

regulatory network structure prediction with time series 

gene. However, the obtained accuracy is still low (0.76) 

and BN can obtain more accuracy than that already 
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obtained from this work. Also, we believe that this work 

has ignored the important information about genes 

during training their algorithm and this may be the cause 

of producing non- meaningful regulatory network. 
 

The study by [14] tried to resolve the difficulties in 

implying GRN from gene expression data. A unique 

non-parametric learning strategy depending on 

nonlinear dynamical systems was also presented. These 

non-parametric techniques more precisely infer network 

architectures than do conventional methods for broader 

GRNs encompassing numerous genes, but at a powerful 

processing expense. They stated that their approach had 

produced low performance and it didn't perform better 

than their previous work. Again, we still believe that 

this work ignored important information about genes 

during training its algorithm and this may result in non- 

meaningful regulation network. 
 

A new approach for identifying connections 
involving genes based on numerous expression data was 
developed in [15]. The foundation of this approach is 

the representation of statistical interdependence using 
Bayesian networks. Both a revolutionary search 
algorithm (Friedman) and a method for assessing 
statistical data served as the foundation of their 
approach. They used their techniques on the actual 

expression data without any previous information, and 
they were able to identify causal connections and 
additional gene relationships besides strong correlation. 
But with significantly low performance. So, they 

planned to apply a learning approach (that is what this 
work tries to do). Many authors, including the proposed 
work, think that such methods have numerous 
shortcomings. (1) A regulatory link between two genes 

may not always exist just because their expression levels 
are identical. (2) Despite the existence of a real 
connection, it can be difficult to determine which is the 
regulator and which is the aim. (3) Because of the 
complexity and various layers of gene regulation in 

addition to the potential resulting latency, these 
strategies can only diagnose a restricted number of 
regulatory connections, which makes the regulatory 
connection between a regulator (an activator or a 

repressor) and its objective very elusive and challenging 
to identify. 

The work by [16] employed BN to describe 

interactions among co-clustered genes following 

clustering relying on Gene Ontology to increase 

performance. Additionally, they presented a novel 

technique for adding time data to BN via cross-

correlation among co-clustered genes. Reconstructing 

the regulatory network of 84 yeast genes using this 

strategy. Their approach improved the accuracy from 

66% to 72%. We still see that the accuracy resulted by 

this work is unpromising. We still aspire to better 

accuracy. It is believed that the cause of low accuracy is 

the absence of regulation information during training 

BN algorithm, and this may result in non- meaningful 

regulation network. 
 

The work by [17] is the most related work to 

Gat2Get, although it didn’t use Bayesian network. 

Target pattern recognition is a key component of their 

strategy for determining gene regulatory connections. 

Two stages were taken to complete the pattern 

recognition: Finding genes with recognized target genes 

(KTGs) of each analyzed regulator that have expression 

patterns identical to their own was done using a first 

approach. By looking for regulator-certain binding 

positions in their promoter sequences, the chosen genes 

were further screened. They used the method to the 

recognized target genes of 18 yeast regulator genes and 

found 267 additional regulatory connections. 36.1% of 

the newly found target genes shared or were comparable 

to a KTG of the regulator. Although they used suitable 

gene regulation properties, the achieved accuracy was 

not at all promising, this work aims to achieve better 

accuracy. This work is the most related to our proposed 

approach as it included the gene regulation properties in 

their mining techniques. The current work proposes to 

use these properties in a different form, and with the 

most suitable classifier (Bayesian Network). They 

introduced two Bayesian information criterion (BIC)-

based BN scoring functions. They found a schema and 

raised the scores by combining these evaluation metrics 

with the DBN architecture. In comparison to the BIC 

score, their BN scoring functions greatly increase the 

learned graphs' accuracy. Also, the work by [18] is 

another most related work to Gat2Get. It made an effort 

to pinpoint the central GRN in charge of a biological 

activity' choice. They developed an assessing 

framework for building core GRN using transcriptomics 

data and biological databases. Their work shows 

outperforming existing algorithms in inferring GRN. 

5 THE PROPOSED FRAMEWORK 

This work depends mainly on machine learning 

using BN. The proposed approach also uses a BN 

scoring technique that is based on the scoring method by 

[1]. The used scoring method is derived from Bayesian 

Information Criterion (BIC) to learn Bayesian network 

during searching candidate GRN. 

Based on Figure 1,  X is a matrix of p genes 

measured across n timeslots, P is a set of measured genes 

where (1  a  p) and N  is a set of samples in different 

timeslots where (1 t  n). p
a 
 denotes a set of measured 

genes excluding a. i.e., p
a 
= {a}, and    

  is the activity of 

gene (a) at timeslot t. Eab is the edge between node   
  

and node      
  . Par(S

a
) is the parent of   

  in G where 

G(E) is a set of all edges of GRN.  The edges between all 

pairs of genes are scored using BIC where foreach pair 

of gene activities (  
  ,      

 ) the possible edge Eab is 

scored using the conditional dependence between them at 

t and t+1.  

     (   ∑ ∑      (         (   
 
     (7) 
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And the score for the edge Eab that presents in the 

graph G is expressed in Equation (8).  

     ( (    ∑ ∑      (   (        (   
 
        (8) 

The value of ab can be used as a score of the edge 

between the gene activity   
  and    

 . A small value of 

ab means that there is a conditional dependency between 

the two genes (no null hypothesis). So, the value of (1-

ab) can reflect the score strength of the edge between 

  
  and    

 . Using the value of ab to be assigned to 

edge Eab which is equivalent to       (       for each 

pair of genes (p-1 genes), i.e., the highest score. The 

edge score can be computed using Equation (9). 

     ( (    ∑ ∑    (              (   
 
    (9) 

Where  is constant that used to push the probability 

far from zero. This value can be chosen randomly and 

verified through practical experiments.  

As outlined from the related works, this work is 

motivated to enhance the significant low performance or 

accuracy and see that the wealthy input data and the 

absence of the regulation information about genes during 

training phase is the cause of the resulted non- 

meaningful regulation network. The proposed framework 

is using a flow diagram ( Figure 4). It goes in five main 

phases in logical order to optimize the classification 

performance and accuracy. The operations of the 

proposed approach are described in Figure 4 as the 

following : 

 Prepare normalized input data by reduction its 

complexity and dimensionality by using 

dimension reduction method. (Performance 

optimization step) 

 Reformat the output data by converting it into 

binary matrix between the known genes and 

their regulators.(accuracy optimization step) 

 Construct predictor corresponding to gene 

expression data input and corresponding gene 

regulators as a target. 

In addition, the core operation of proposed 

framework as depicted in Figure 4 is divided into two 

parts, the GRN construction subsystem (process # 5 in 

Figure 4) and the GRN learning subsystem (process # 4 

in Figure 4). 

5.1 GRN Construction Subsystem 

This subsystem is responsible for the construction of 

GRN from the gene activity data. In other words, the 

main role of this subsystem is to convert gene expression 

data to creation of a directionless gene interaction 

network. The process of this subsystem includes five 

steps that are depicted in Figure 5 as the following: 

 
Figure 4. Flow diagram of Gat2Get 

Step 1: Convert genes-samples matrix to gene-gene 

matrix and reduce the dimension using the mutual 

information algorithm for reducing the false negative rate 

(FPR) and increase true positive rate (TPR). As shown in 

Figure 5, MI technique using different thresholds divides 

the candidate genes into three categories (low, mid, and 

high) dependent genes. Ignoring independent genes will 

reduce the dimensionality. 

 
Figure 5. Step 1 in GRN Construction. 

Step 2: For each gene in the high-dependent genes 

category, estimate the score parameters with the 

remaining genes as an indicator for regulatory strengths. 

Furthermore, the high-dependent genes are used as 

constraint of the model (See Figure 6). 

 
Figure 6. Step 2 in GRN Construction. 

Step 3: Figure 7 depicts the core technique of 

Gat2Get approach. According to the strength of 

dependency of the given gene current gene, the 

regulatory genes are split into three regulatory types: 

weak, or mid, and  strong. 

5.2 GRN Learning Subsystem 

As described in Figure 4, Bayesian network 

Learning process receives two input datasets, the gene 

expression profile, and gene regulator vector.  
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Figure 7. step 3 in GRN Construction 

This process uses the first input to determine the similar 

gene profile and the second to identify the related genes. 

The following algorithm describes the process of BN 

Learning subsystem in Figure 8: 

 

 
Figure 8.  BN Learning algorithm 

6 EXPERIMENTAL STUDY 

The proposed approach (Figure 4) is implemented in 

Java using an edited version of Jbayes class and MS 

Naive Bayes algorithms of MS SQL Server Analysis 

Services (SSAS). Data Cleaning is performed using the 

Info Sphere Information Server for Data Quality from 

IBM. Dimension reduction is implemented using PCA of 

Microsoft SQL server. Re-formatting is implemented via 

ProM version 6 ,MS SQL server, MS Excel also used.   

6.1 Gene expression Profiles 
 

The source of dataset that used by the present work 
is an (Array Express) which generates gene expression 
matrix by normalized row data file. The following Table 
(1) presents a properties summary of the real dataset.  

Table 1: The used gene expression properties    
Name Mouse gene dataset 

Number of samples 55 

Number of genes 7388 

Type of source Microarray   
The dataset that is studied by the works by Friedman 

et al. in [15], Haoi et al. [13]   and Hairong et al. [17] is 

chosen for this work to simplify the result comparison. 

The dataset is first normalized by eliminating the 

maximum calculations that differ than the above two 

units  (to reduce false-positive in results). The scores are 

thus an average of and Median-subtracted. Percentages 

under zero are often not biologically significant, 

according to prior research Hovattam et al. [19]. 

Therefore, any percentages less than one are adjusted to 

one. Less than 0.01% of all data points are lost, and those 

scores are equated to zero. 5016 genes are eventually 

kept and entered into the database for research. Table 2 

presents a sample (a few rows & columns) of the resulted 

normalized expression dataset. The first column 

represents the genes’ codes and other columns determine 

the expression level at different points of time with a 

header row. Each row signifies the gene expression 

levels of a specific gene at different time points or 

different conditions. 

Table 2 : Sample of GED after modification 

 

6.2 Gene Regulators Vectors 

Mouse GO-Regulators that used by [17] are 

obtained from the Gene Ontology [20] based on the 

knowledge from EBI [21] and both are mapped (as the 
expression profiles) to XM gene to the regulators. 

Regulators with less than 100 genes among the expressed 

genes are not included in our investigation because the 
statistical tests do not apply to them. 

 
Note that the utilized regulation information that we 

obtained is not found directly in any ontology or 
annotation store. The first step is to recognize GO terms 
with appropriate GRO terms. Then use a quick tool from 
EMBL-EBI as fast browser for Regulation Gene 
Ontology terms and annotations. The regulator chosen if 
its affected genes include any gene in the expression 
matrix. 

6.3  Applying Gat2Get Method 

To train the classifier, the regulator dataset is 

prepared. The regulators with a gene participation of 140 

or less are removed. The result is twenty regulators set. 

Table 3 summarizes a sample of these regulators. Three-

fold cross validation experiments were used on an Intel 

core(TM)2 Duo PC with an individual  2.66 GHz 

processor and a 2 GB RAM. The used software is 

Microsoft Windows 8 with data mining service from 

Microsoft .NET SSAS. These analysis Services provide 

an integrated platform that incorporates data mining to 

create business intelligence solutions with predictive 

analytics. 
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The implementation of Bayesian network with 

SSAS is straightforward. It is needed to set some 

parameters to ensure completing the process with 

reasonable accuracy and quality. Because SSAS-

Bayesian computes the likelihood of each situation of 

every entry column with every probable situation of the 

expected column, the minimum dependency probability 

between input and output attributes must be specified 

between( 0, 1). 

Table 3: Sample of selected regulators  

 
By this way, the size of generated content is 

controlled. Larger value reduces the number of attributes 

in the model. Dependency probability is set to 0.5 to 

return only those inputs that are more likely than random 

to be correlated with the output. Class priorities are 

another parameter that needs to be set specify. It refers to 

the probability that any given input will be in class 

regardless of other information. This parameter is set 

automatically to allow SSAS-Bayesian to estimate it 

from the training set by computing the fraction of 

training records that belong to each class.  

7 RESULTS 

7.1 Evaluation of Classification Techniques. 

Finding the accuracy rate is an important part of any 
model evaluation. Confusion matrix, which is a 
convenient metric to understand the experimental results, 
is used for this task. A confusion matrix displays the 
enumeration of the real against forecast class scores. It 
displays in what manner the approach forecasts and 
offerings the facts almost effects might have gone 
incorrect. Table 4 is a model confusion matrix. The 
classifier assigns TP + FP illustrations to the positive 
class(True Positives, False Positives ) and TN + FN 
illustrations to the negative class (True Negatives, False 
Negatives). Accuracy and Precision of the classifier are 
usually used to measure the quality of classification [1]. 
They are calculated from the following equations (11-16) 

Table 4: Binary classifiers confusion matrix 

   
P = T P + FN              (11) N = TN + FP                   (12) 

       
     

 
              (13)        

  

 
           (14) 

         
     

    
      (15)            

  

     
          (16) 

 
Table 5 presents the results that are obtained from 

the introduced model based on the previous equations . 

The following observations are made from the previous 

results that are obtained during the training model with 

the present approach are noticed:   

Table 5: Selected gene Regulators used for comparisons. 

 
 The input matrix with the regulator data is hard 

to classify. This may be due to the presence of 

some noise in expression values. 

 Bayesian inference within the introduced 

method success to achieve 97% accuracy for 

some regulators with an average of 91% for all. 

As expected before, Bayesian Network with 

regulator information outperforms the previous 

work that obtained maximum 76% of accuracy. 

 The closest works to compare against the 

present work are by [15] -A, [13]-B and [17]-C. 

Taking the regulation dataset size in addition to 

the expression dataset size into consideration, 

the presented approach results give a more 

promising performance and accuracy. (Figure 9) 

 False negative results from machine learning 

are not necessarily biological false negative [18] 

It may be reasonable when a gene that was 

assigned to a regulator based on profile 

similarity has a specific activity that demands a 

different regulation strategy. 

7.2 Lift Chart Analysis 

Lift chart analysis is a popular graphical technique 
to assess the performance of classification approaches. 
Lift chart is a beneficial procedure for visualizing, 
establishing, and choosing classifiers depending on their 
accuracy [18].   
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Figure 9: The accuracy of Gat2Get and related works 

The likelihood that a classifier would score a 

randomly selected positive occurrence better than a 

randomly selected negative occurrence is represented by 

the area under the curve (AUC) in lift charts. A better 

AUC hence denotes greater overall success. For various 

sized random samples in Lift charts, diagonal lines yield 

the anticipated outcome. In the instance of the Lift chart, 

the precise coordinates of each indicated point that 

appears on the graphical region of the two illustrations 

match the likelihood of the goal value of the related 

cases. Figure 10 shows the lift charts from the present 

experiment that give a better impression about the 

performance of the introduced method [18][22-24]. The 

better performance is due to the dependence of Bayesian 

learning on well reduced profile in addition to the use of 

gene regulatory.  

 

Figure 10 : lift charts from Gat2Get experiment 

7.3 From Biological View 

Gat2Get mainly tries not only to obtain better 

accuracy, but also to improve the quality of resulting 

gene regulation network from the biological view. The 

idea depends on including the regulation properties in 

learning steps instead of depending only on the 

expression data as a source of genes relations. From 

biological view, the presented approach with including 

the regulation properties to learning phase has 

outperformed other works that depend only on the 

expression information. The resulting GRN is less 

complex, more readable, more meaningful and the 

relations between genes are clearer. Figure 11 (a, b) 

illustrates the complex GRN that resulted without the 

proposed approach compared with meaningful GRN that 

resulted from the proposed approach. 

 

(a) Before Gat2Get 

 

(b) with Gat2Get 

Figure 11: The resulting GRNs  

8 CONCLUSION AND FUTURE WORK 

This work introduces a new approach for inferring 

gene regulation network from gene expression data. By 

implementing this proposed approach, we can conclude 

that the including of gene regulation properties improves 

the process of capturing natural classes during inferring 

the relations between genes from expression data. This 

can decrease the dimensionality of the target network. In 

addition to its role in improving the result accuracy. High 

complexity and poor quality of gene expression data 

acquired by high-throughput methods like microarray 

provide two difficulties in the context of the current 

issue. That is the cause of our decision to use Bayesian 

network. Our experiment shows that BN is efficient to 

some level in classifying such high dimensional data 

even without dimension reduction, but in the presence of 

regulatory information. When evaluating constrained 

probabilities from data, the Bayesian network can 

average out noise points to produce good results. It can 

also manage outliers by suppressing them through 

approach construction. In fact, the inclusion of gene 

regulation properties can be the main factor of improving 

the quality of the resulted GRN as it acts to reduce the 

dimensionality by avoiding the unreal relations between 

genes. The low poor performance in terms of the number 
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of False Positive (FPs) of some regulator’s classes may 

be due to some biological causes, or the high noise in the 

dataset. The nature of noise and highly dimensional of 

the data from real-world application domain as DNA 

microarrays still represent particular challenges for 

machine learning methods. Dealing with such big and 

noisy data can act as a source for future research 

directions in machine learning. It is planned to extend 

this study to identify the hidden regulators and 

investigate the impact of these missing regulators on the 

gene profile and so on the accuracy of BN. 
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