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ABSTRACT 

This study introduces a new application of aggregate production planning (APP) in the 

manufacturing of carbon steel pipes and hot induction bends. Given the strategic 

importance of this type of industry, enhancing productivity through cost-effectiveness, and 

economic performance optimization has become crucial in such industry. The study 

proposes an APP optimization model that is both inspiring and realistic, aimed at 

increasing profitability by minimizing both production and inventory costs. The model is 

formulated as a deterministic, multi-product, multi-period model, and three alternative 

optimization techniques were applied: linear programming, genetic algorithms, and hybrid 

genetic algorithms, as a case study in a steel pipes manufacturing company. The results 

indicate that linear programming yields the same results as hybrid genetic algorithms, but 

in less time. Additionally, a feasibility study evaluated the effectiveness of the proposed 

model against the original planning system in the company, revealing a 12% decrease in 

overtime wages and a 9% increase in profit. 

Keywords:  Aggregate Production Planning (APP), Deterministic Demand, Steel 

Pipes Industry, Mathematical Programming, Genetic Algorithms. 

 

1. INTRODUCTION 

Aggregate production planning (APP) involves 

optimizing different capacities, such as production, 

overtime, inventory, backorder, workforce, and 

subcontracting, over a planned time horizon of 3 to 18 

months to meet overall enterprise demand [1]. In recent 

years, Egypt has launched numerous mega projects in 

various strategic fields, including construction, such as 

the building of 14 new cities like the new administrative 

capital and the northwest coast development project [2, 

3], as well as ongoing projects in the oil and gas and 

renewable energy sectors [4]. Additionally, Egypt has 

achieved significant agricultural development goals, 

aiming to reclaim 1.5 million feddan of desert land for 

creating new societies, achieving agro-industrial  

 

 

development, and reducing food imports [5]. 

Moreover, Egypt is seeking to build its first nuclear plant 

at the AL DABAA site on the northern coast [6]. Since 

carbon steel pipes and hot induction bends are essential 

components in all of these strategic fields, it is crucial to 

appropriately plan for their production to meet rising 

demand and prevent potential delays in delivering these 

strategic products. International Pipe Industry Company 

(IPIC) is the only Egyptian manufacturer of longitudinal 

submerged arc welded carbon steel pipes (LSAW) and 

hot induction bends. Therefore, an appropriate aggregate 

production planning should be established to align with 

the national plan time and minimize the company's 

production and inventory costs, leading to increased 

profitability. 
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In this research, we consider the modelling and 

optimization of the APP on the pipes manufacturing 

industry, where the demand is project-based and 

deterministic, and defined in terms of pipes products 

contracted manufacturing project. Multiple products 

aggregate planning were taken on, including carbon steel 

pipes and hot induction bends. Multiple objectives are 

included: Minimizing production costs and inventory 

costs. The ultimate objective of this research is arrive at 

the optimum APP solution techniques, among multiple 

alternative solution techniques identified, including both 

mathematical programming and artificial intelligence 

techniques, as well as hybrid techniques. 

In the 1950s, the APP problem-solving approach was 

introduced [7], with the proposal of a linear decision rule 

[8] and the advancement of transportation methods to 

address APP [9]. Since then, the APP problem has been 

extensively studied due to its potential for cost control in 

production and inventory, which accounts for a 

significant portion of a manufacturer's overall costs [10]. 

According to jamalnia et. al. [11], conducting APP 

requires pre-specification of the planning horizon with 

pre-defined planning periods (e.g., weeks, months, or 

quarters), as well as the determination of relevant 

information and data to establish consolidated plans, 

such data are illustrated in the Figure 1. 

 

 
 

Figure 1: Creation of a generic APP model [11]. 

 

The aggregate plan is a consolidate tool in deciding the 

most suitable adjustment for different kinds of resources 

and capacities within existing constraints to meet 

required demand while maximize profitability. 

In accordance with [12, 13], three main strategies exist 

for aggregate planning: level, chase, and mixed. The 

level strategy aims to maintain a steady production rate 

with a constant workforce, using surplus inventory to 

meet demand fluctuations. The chase strategy matches 

demand and production rate period by period through 

various methods, such as workforce size variation, 

subcontracting, overtime, and equipment optimization. 

The mixed strategy varies production rates and inventory 

levels to implement the most effective production plan. 

Techniques for solving aggregate production planning 

problems can be informal, optimal, or near optimal [14–

17] . Informal techniques involve creating visual aids 

like tables or charts to help planners utilize capacity to 

meet demand and develop alternative plans, but they do 

not always yield optimal results. Optimal techniques, 

such as linear programming models, transportation 

methods, linear decision rules, and goal programming, 

guarantee an optimal solution. Heuristic techniques, 

including search decision rules, production switching 

heuristics, management coefficient models, parametric 

coefficient planning, and simulation. Metaheuristic 

techniques, such as Genetic Algorithms (GA), Neural 

Network, Tabu Search Algorithm (TSA), Particle Swarm 

Optimization (PSO), Simulated Annealing (SA), Ant 

Colony Algorithms (ACA), and Fish Swarm 

Optimization (FSO) have been widely used to solve APP 

problems quickly and effectively, though their solutions 

are not always optimal. 

APP optimization models can be classified depend on 

the uncertainty level that exist in the model into two 

main categories, the first is deterministic models and the 

second uncertain models [17]. Various industries have 

used different approaches to solve aggregate production 

planning (APP) problems. The paint industry utilized 

Possibilistic Linear Programming [18] and Fuzzy Goal 

Programming [19], while the textile industry used 

Genetic Algorithms [20, 21], Possibilistic Environment 

Based Particle Swarm Optimization, Genetic Algorithms 

and Fuzzy Based Genetic Algorithms [22], Hybrid 

Genetic Algorithm and Simulated Annealing [23], and 

Particle Swarm Optimization [24]. The vegetable oil 

industry applied Fuzzy Linear Programming [25], 

Simulated Annealing Algorithms, Modified Simulated 

Annealing Algorithms and Harmony Search Algorithms 

[26], simulated annealing algorithms and particle swarm 

optimization [27], and a combination of Fuzzy 

Programming, Simulated Annealing, and Simplex 

Downhill Algorithm [28].  

The automotive industry employed Mixed Integer 

Linear Programming Model [29], Weighted Sum 

Approach [30], and Linear Programming [31]. The 

electro technology industry used Nonlinear 

Mathematical Model [14], Genetic Algorithms [32], and 

Transportation Model [33]. The food and drinks industry 

utilized Nonlinear Multi-Objective Stochastic 

Optimization Model [34], and Linear Programming 

Model [35, 36]. Lastly, the cosmetics and toiletries 

industry utilized Genetic Algorithms, Particle Swarm 

Optimization [37], and Fish Swarm Optimization [38]. 

Moreover, numerous applications of APP optimization 

have been implemented in various industries, such as 

home appliance [39], gardening equipment [40], 

machinery manufacturing [41, 42], and kitchen and 

bathroom cabinets [43]. However, it should be noted that 

some methodologies for APP optimization have only 
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been demonstrated through hypothetical numerical 

examples. These include Genetic Algorithms [44, 45], 

Goal Programming [46–48] Fuzzy Linear programming 

[49] and Harmony Search Algorithm [50]. 

APP optimization applied in various industrial sectors 

over the past decade, as summarized above. However, 

the carbon steel pipes and hot induction bends industries 

are distinctive and strategic due to high capital costs, 

large investments, and the need for skilled workers. 

These industries play a critical role in supplying strategic 

projects in fields such as oil and gas, construction, water 

supply, and energy. Since IPIC is the only supplier of 

LSAW carbon steel pipes and hot induction bends in the 

Egyptian market, optimizing aggregate production 

planning in this unique industry is crucial to meeting 

rising demand and increasing profits by reducing 

production and inventory costs. 

This study aims to compare optimization techniques 

for aggregate production planning (APP) of carbon steel 

pipes and hot induction bends. The objective is to 

minimize production and inventory costs that will 

maximize profitability in turn, and meet demand within 

the required time. A mathematical model will be 

formulated, and optimization approaches, such as genetic 

algorithms, hybrid genetic algorithms, and linear 

programming, will be applied using actual historical data 

from IPIC Company. The optimal approach will be 

selected based on a comparison of the different 

optimization methods. Finally, the financial feasibility of 

the chosen optimization approach for APP will be 

evaluated against the original planned results. 

The subsequent sections of this paper are organized as 

follows: Section 2 elucidates the formulation of the 

mathematical model for addressing APP optimization 

problem. In section 3, a case study of the company is 

presented along with the historical data required to 

validate the proposed optimization model. Section 4 

discusses the validation of the optimization model 

through various optimization approaches. The findings 

and results of this study are presented in section 5. 

Finally, section 6 summarizes the conclusions drawn 

from this research and delineates potential avenues for 

future work in this area. 

2. MODEL FORMULATION 

Following an extensive review of relevant literature 

[02, 21] [27] [32] [40], this study adopts the equations 

and nomenclatures deemed most appropriate for the 

present context. Notably, certain parameters utilized in 

prior literature, such as subcontracting, hiring and firing, 

backorder levels, related costs, and others, have been 

eliminated, while new parameters and equations, as 

detailed in this section, have been introduced. This 

approach is taken in light of the specific applicability of 

the model to the industry of carbon steel pipes and hot 

induction bends, and its use in the IPIC Company.  

The company's range of products , consisting of 

carbon steel pipes of varying sizes and hot induction 

bends of different angles and sizes which are entirely 

depending on the client requirements, have been 

aggregated into two distinct product families: 

longitudinal submerged arc welded carbon steel pipes 

(LSAW Pipes), and hot induction bends. Standard steel 

plates of 12 m each are used as the raw material for 

pipes, while pipes are utilized for producing hot 

induction bends. These details are further elaborated on 

in section 3. As such, the company must make several 

adjustments, including overtime production levels, 

finished product inventory, and raw material inventory, 

in order to meet the deterministic demand for types of 

products over the planning periods. APP problem 

focuses on formulating multi-objective multi-product 

multi-period model for the study, which aims to 

minimize total production cost and minimize inventory 

cost through the planning horizon. The two objectives 

are consolidated into weighted sum single objective to 

make the application of Linear programming as well as 

Genetic Algorithms feasible. The following APP model 

was built upon the following assumptions, which are 

special for the case study. 

1- All related costs are fixed during the planning 

horizon.  

2- The demand is deterministic. 

3- Backorder, subcontracting, hiring and firing 

policies are not applied due to the company 

regulations.  

4- Initial inventory of raw material and finished 

products are equal to zero.  

5- Supplement of raw material is assumed to be on 

hand in the beginning of each period.  

6- Overtime production and inventory cannot 

exceed their maximum capacities.  

7- Regular production is assigned to each product 

because each product is manufactured on a 

different production line so that regular 

production rate is known and fixed within 

periods. 

8- Each product has an expected wastage level, 

and it must be covered in the level of raw 

material inventory. 

9- The level of finished product inventory in the 

final period must be zero.  
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2.1 Problem Nomenclatures   

  – Type of products,   = 1, 2...  . 

  – Planning horizon number of periods,   = 1, 2...  . 

    – Demand for product   in period   (units). 

     – Quantity of regular time production units for 

product   in period   (unit). 

  
  
 – Quantity of overtime production units for 

product   in period   (unit). 

    – Regular time production cost per product for 

product   in period   ($/unit). 

     – Overtime production cost per product for 

product   in period   ($/unit). 

  
   
– Quantity of raw material held in inventory for 

product   in period   (unit). 

     – Inventory carrying cost for raw material per unit 

for product   in period   ($/unit). 

  
  

 – Quantity of finished products held in inventory for 

product   in period   (unit). 

  
  
 – Inventory carrying cost for finished product per 

unit for product   in period   ($/unit). 

  
 ( - )

 – Quantity of units left in finished inventory for 

product   in period   -1 (unit). 

  
 ( - )

 – Quantity of units left in raw material 

inventory for product   in period   -1 (unit). 

      – Minimum amount of finished products 

inventory per product (unit). 

      – Maximum amount of finished products 

inventory per product (unit). 

       – Minimum amount of raw material inventory 

per product (unit). 

      – Maximum amount of raw material inventory 

per product (unit).  

      – Maximum production level in overtime (unit). 

       Maximum production level in regular time 

(unit). 

  
 
– Expected wastage percentage for product   (%). 

2.2 Decisions Variables 

  
  
 – Overtime production level for product   in 

period   (unit).  

  
   

- Inventory level of raw material per unit for 

product   in period   (unit).  

  
  

 – Inventory level of finished product for product   

in period   (unit).  

2.3 Objective Function  

The main objective of the model is to minimize the 

sum of total of production cost and inventory cost. The 

total production cost is consisting of regular time 

production cost plus overtime production cost. 

Regular time production cost, Equation (1), is the 

multiplication of the cost associated with production one 

unit of product in regular time and number of products 

produced in regular time in each period. 

 

Regular time production cost =        
  

                (1)  

                                             

Over time production cost, Equation (2), is the 

multiplication of the cost associated with production one 

unit of product in overtime and number of products 

produced in overtime in each period, overtime 

production is necessary to cover the demand in certain 

period, when regular time production level is insufficient 

to meet the demand.  

 

Overtime production cost =       
  

                      (2)   

                                                

Hence, the first objective function, minimize the 

production cost, can be written as shown in Equation (3): 

 

       
   

 
  

   

 
 [                 ]                     (3)   

                                          

For the second objective function, which is 

minimization inventory cost, inventory cost can be 

separated into raw material inventory cost and finished 

products inventory cost. Raw material inventory cost is 

the related cost with inventory of raw materials that is 

required to satisfy the sum of production level in regular 

time, production level in overtime and the units that will 

held in raw material inventory to cover the expected 

wastage level for each period, it was formulated 

according to how the company deals with the raw 

material. Therefore, inventory raw material cost can be 

illustrated in Equation (4): 

 

Raw material inventory cost =       
  

   
  

   
  
                                                                                                                                                                                             

                                                                                   

Finished products inventory cost is the related cost 

with inventory of finished products in each period, it is 

consisting of inventory cost of one unit multiply by 

number of finished products held in finished inventory at 

the end of each period, represented in Equation (5).  

 

Finished products inventory cost =   
  

  
  

              (5) 

                                                                     

Therefore, the second objective function is described 

by the following Equation (6): 

 

        
   

 
  

   

 
        

  
   

  
        

  
  

  
   (6)  

                                                                                        

These two objective functions, Equation (3) and (6), 

can be combined into one single objective function, 

Equation (7), to minimize the total of production cost 

and inventory cost for type of products   in planning 

horizon number of periods  .  
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 [                 ] 

   
   

 
  

   

 
        

  
   

  
          

  
  

  
            (7) 

2.4 Finished Products Inventory Constraint 

The first constraint indicates that the summation of 

regular time production level for product  , overtime 

production level for product  , and quantity of finished 

products for product   that kept in finished product 

inventory from period   -1 minus quantity of products   

that are held in inventory in period   must be equal to the 

demand of product   in period  , illustrated in Equation 

(8).  

 

     
 ( - )

   
  

   
  

-   
  

                                   (8) 

 

The number of finished products for product   must be 

held in inventory in period   must be greater than or 

equal to minimum quantity of inventory for product  , as 

shown in Equation (9). 

 

  
  

                                                                       (9) 

 

Equation (10) represents the number of finished 

products for product   in period   must be less than or 

equal to the maximum number of products that can be 

kept in inventory for product  , this constraint is 

according to the available inventory spaces. 

 

  
   

                                                                    (10) 

 

The number of finished products for product   in the 

last period must be equal to zero as indicated in Equation 

(11), because this type of industry is make to order 

according to the requested order from client. Therefore, 

production only starts according to the requested order 

from client and there are not any products left in 

inventory after the order is completed.  

 

  
  

                                                                     (11) 

2.5 Raw Material Inventory Constraint  

The first constraint of raw material inventory 

constraints in Equation (12) demonstrates that the 

summation of raw material required for production of 

products   in regular time, overtime and amount of raw 

material that held in inventory for period   must be less 

than or equal to the maximum amount available for raw 

material inventory. This constraint is novel and has been 

specifically developed for the purposes of this case 

study. 

 

   
  

   
  

   
  

                                             (12) 

 

Equation (13) features a novel formulation for the 

second constraint of raw material inventory. In the first 

period after production starts, the number or raw material 

that held in inventory minus the anticipated wastage 

level in production of product   in regular time and 

overtime must be greater than or equal to the minimum 

raw material inventory. Minimum raw material inventory 

hence represents the minimum stock must be kept in 

inventory of raw material according to company’s 

policy.   

   
  

-   
 
(       

  
)                                (13)     

 

The third constraint, which has been newly introduced 

in Equation (14), serves to account for any anticipated 

waste that may arise for product   during period   

following the start period. This is accomplished by 

adding raw material to be held in inventory at the end of 

the period, while subtracting the sum of raw material 

inventory from the previous period  -1, as well as the 

estimated amount of waste generated during the 

production of the product   during regular and overtime 

production in period  . 

 

  
  

-   
 ( - )

-   
 
(       

  
)                        (14) 

 

The fourth and last novel constraint regarding raw 

material is for planning purpose, which means it is 

essential to have in the last period, quantity of raw 

material that covers any anticipated of wastage that could 

happens as depicted in Equation (15). In another words, 

the amount of wastage for the whole demand is taking 

under consideration and aimed to be covered through 

surplus raw material.  

 

  
  

   
 

 
   

 
 

   

 
                                     (15) 

2.6 Production Constraints  

Production level of overtime for product   is limited 

by the available overtime hours in each period, as 

revealed in Equation (16). While, Equation (17) indicates 

that production level of regular time for product   in 

each period equals the maximum production level in 

regular time.  

 

  
  

                                                                  (16) 

  
  

                                                                   (17) 

2.7 Non-Negativity Constraint  

The last constraint, Equation (18), is to avoid negative 

values of decision variables. 

 

   
  

    
  

    
  

                                                  (18)  

 

Finally the amount of raw material to be procured 

from the supplier at the start of each planned period can 



 

102 

 

be determined by the model's deliverables, using the 

novel Equation (19) developed as follows: 

 

      
  

    
  

   
  

   
  

-  
   -   

                       (19) 

 

3. CASE STUDY 

International Pipe Industry Company (IPIC) was 

incorporated in Egypt since 2001, IPIC aims to provide 

and support Egyptian and international oil and gas 

industry by LSAW pipes and hot induction bends, 

mainly for oil and gas, construction, infrastructure, and 

water Transmission projects. IPIC provides a 

diversification of products besides longitudinal 

submerged arc welded pipes there are hot induction 

bends, pipes accessories, Steel Structures’ Fabrication & 

Erection, and spiral welded pipes [51]. However, the 

company’s demand in this study considered to have been 

aggregated into two families of products, which are 

longitudinal submerged arc, welded (LSAW) carbon 

steel pipes and hot induction bends, having same raw 

material inputs for pipes that are steel plates, and for hot 

induction bends are pipes. The demand is 

deterministically, since it is based on contracted 

quantities and different sizes according to client 

requirements, as shown in the Figure 2.  

The planning process in the company starts by 

working alongside with marketing department to meet 

the requirements of the clients such as delivery dates 

depending on projects on hand and projects on process. 

Planning department develops the executive budgetary 

with the concern departments depending on the amount 

of consumables, wages, raw material, resources, utilities, 

and the planned duration of the project. After that a 

production plan is made and work order is issued and 

distributed to production units and QC department to 

launch the project on the production line. Also planning 

department has an essential role in project’s cost control 

according to the execution budgetary by issuing a weekly 

project’s cost report. 

 

Figure 2: Contracted project-based demand and production planning at IPIC. 

 

Original planning system in the company is obliged 

with the production system of finish to start, this means 

that a project must be finished to start with the following 

one, without taken into account aggregate production 

planning strategy. This system has many disadvantages 

represented in incapability of handling various projects 

at the same period, potential for having delay penalties 

imposed by customers, having of lost orders 

opportunities, and not achieving the optimal production 

and inventory costs. Therefore, it is essential to 

formulate APP model that is applicable for the company, 

and financially evaluate it against the original planning 

system.  

The APP at IPIC can be described as multi-products, 

deterministic demand. The main planning objectives is 

multiple; including reducing production and inventory 

costs. According to company policies, overtime is 

possible, whereas backorders and subcontracting are not 

allowed. 

Tables (1-5) presented actual historical data acquired 

from the company during the period from March to June 

2022. The data pertains to various contracted projects 

regarding steel pipes of varying sizes, and hot induction 

bends of different angles and sizes, and was consolidated 

into an aggregated form. These data serve as inputs for 

the proposed optimization model for pipes and hot 

induction bends manufacturing, which will be utilized in 

subsequent sections to evaluate the efficacy of alternative 

solution techniques. Noted that pipes for hot induction 

bends were supplied by clients, and each pipe are 

producing three hot induction bends for the selected 

projects, while standard raw material plates for pipes 

were supplied by the company. In addition, the expected 

wastage percentage for pipes and hot bends according to 

the company are 1.029% and 2.2%, respectively.as 

mentioned in Equations (13-15) 
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Table 1. Total demand of  1 (LSAW pipes) and  2 (hot 

bends) 

T (periods) 
Demand 

 1 (LSAW Pipes)  2 (Hot Bends) 

March 2450 pipes 200 bends 

April 2350 pipes 280 bends 

May 2850 pipes 300 bends 

June 2850 pipes 220 bends 

Table 2. Available regular time and overtime in each period 

T (periods) 
Working 

Days 

Available 

Regular 

Time (hrs) 

Available 

Over Time 

(hrs) 

March 27 378 216 

April 24 336 192 

May 24 336 192 

June 25 350 200 

Table 3. Production capacity in regular time and overtime 

Factor Symbol  1 (Pipes)  2 (Hot Bends) 

Productivity 5 Pipes/hr 1 Bend/2hr 

Maximum 

Production 

Level in 

Regular 

Time (unit) 

      

March 1890 189 

April 1680 168 

May 1680 168 

June 1750 175 

Maximum 

Production 

Level in 

Overtime 

(unit) 

      

March 1080 108 

April 960 96 

May 960 96 

June 1000 100 

Table 4. All required relevant costs 

Cost Symbol  1 (Pipes) 
 2 (Hot 

Bends) 

Regular Time 

Production Cost 

($/unit) 
     $ 2,320.42 $ 624.50 

Over Time 

Production Cost 

($/unit) 
     $ 2,436.74 $ 799.02 

Inventory Carrying 

Cost for Raw 

Material Held in 

Inventory ($/unit) 

     $ 16.6 $ 178.8 

Inventory Carrying 

Cost for Finished 

Product Held in 

Inventory ($/unit) 

  
  

 $ 62.5 $ 119 

Table 5. Inventory relevant data 

Factor Symbol 
 1 

(Pipes) 

 2 (Hot 

Bends) 

Minimum amount of 

finished product held in 

inventory 
      0 0 

Maximum amount of 

finished product held in 

inventory 
      

1264 

pipes 

204 

Bends 

Minimum amount of raw 

material held in inventory 
      0 0 

Maximum amount of raw 

material held in inventory 
      

3,360 

plates 

114 

Pipes 

Table 6 shows the original actual planned production 

and inventory costs for the planned period by using the 

original planning system. 

Table 6. Original planned costs 

Planned Cost Cost 

Original production cost $ 25,558,218.76 

Original inventory cost $ 324,657.40 

Original total cost $ 25,882,876.16 

4. MODEL VALIDATION 

This section presents an application and validation of 

the proposed model based on historical data from the 

company, by using different optimization approaches 

such as Genetic Algorithms optimization, Hybrid genetic 

algorithms optimization, Linear programming 

optimization and manual method. This will be beneficial 

in first evaluating the feasibility of the proposed model, 

and then second comparing the obtained performance 

results of the proposed solution techniques against the 

results of the original plan. MATLAB 2015a software 

was used to solve the model by using Genetic algorithms 

optimization, Hybrid genetic algorithms optimization, 

and Linear programming optimization. For the manual 

method, Excel spreadsheet was used to solve it.    

Next subsections presents brief description of the 

implemented solution techniques to optimize the 

proposed APP model. 

4.1 Genetic Algorithms Optimization 

Genetic Algorithms (GA) are used to seek for 

optimum or high-performance solutions by simulating 

Darwinian biological evolution and natural selection. 

Learning from how live species adapt to numerous 

niches in an ever-changing environment, software may 

emulate natural ways in assisting optimization and 

search issues to grow towards better solutions. Genetic 

Algorithms are mainly created to simulate a biological 

phenomenon as mentioned before, so that most of its 

terminologies are related to biology, but the only 

difference that Genetic Algorithms terminologies are 

simpler than their biological equivalent [52].  

The fitness function is an expression for the objective 

function that is algorithms is trying to optimize [52] . 

Furthermore, the term refers to how fit each potential 

solution that fulfil objective function. The term 

chromosome is a representation of numerical value of a 

possible solution to the problem being optimized, which 

is a form of binary bit string existing in the population. 

During the process of Genetic Algorithms, populations 

are changing constantly by the replacing of current 

population with a new population. These chromosomes 

are referred to as individuals or genotypes [53]. 

To initiate Genetic Algorithms (GA), a set of random 

chromosomes is selected as the initial population or first 

generation. Each chromosome's fitness function is then 

evaluated to determine its optimization problem 
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satisfaction. Random individuals from the current 

generation or population, known as parents, are selected 

based on their fitness value, and crossover occurs where 

genes from parents create a new offspring. Mutation is 

then applied to offspring, where bits are flipped in the 

new chromosomes. This process of selection, crossover, 

and mutation continues until the number of offspring 

equals the initial population, and the initial generation is 

replaced with a new generation consisting of entirely 

new offspring. This iteration continues until the best 

chromosome's fitness value stabilizes over generations, 

indicating the algorithm has reached the optimal solution 

[53]. GA methodology is demonstrated in Figure (3) 

Figure 3: Genetic algorithms flowchart [53]. 

4.2 Hybrid Genetic Algorithms Optimization 

The second approach involves the application of a 

hybrid genetic algorithm optimization strategy that 

utilizes a specialized function in MATLAB 2015a 

software known as the Hybrid function. This function is 

designed to fine-tune the results obtained from the 

genetic algorithms optimization process. The Hybrid 

function employs the Interior point algorithm as its 

default method for solving the optimization problem. A 

flowchart depicting the procedure of the hybrid genetic 

algorithms optimization is presented in Figure 4. 

 

4.3 Linear Programming Optimization 

 The proposed model can be solved using Linear 

Programming (LP) with MATLAB 2015a as the third 

approach. LP is an optimization method that involves 

minimizing or maximizing the objective function subject 

to various constraints. In LP, the objective function and 

constraints are both linear and consist of decision 

variables. The constraints are formulated into 

inequalities and equalities that involve the decision 

variables. 

4.4 Manual Method  

The final method involves solving the proposed model 

using a manual method based on a hybrid strategy [54]. 

This method employs an Excel spreadsheet filled 

manually under the proposed model constraints to 

represent the aggregate production planning proposed 

model. However, it is important to note that this method 

does not guarantee reaching the optimal solution. 

 

5. RESULTS AND FINDINGS  

In this section, we shall report the results and findings 

in applying the APP model alternative solution 

techniques. 

5.1 Genetic Algorithms Optimization  

The Genetic algorithm has been applied to optimize 

the APP model. Different selection and crossover options 

were used in order to select the most effective options 

that obtain the optimal value for the total of production 

and inventory cost, results of the total of production and 

inventory cost for each option are shown in Table 7 and 

Figure 5. 

The minimum value of the total of production and 

inventory cost was obtained after applying of remainder 

selection with heuristic crossover, with a value of $ 

25,738,098.20 and in a time of 94.249 seconds. The 

parameters selected for the genetic algorithms in 

MATLAB 2015a are presented in the Table 8. 

 

 

Figure 4: Hybrid genetic algorithms flowchart 
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Table 7. Variation of the total of production and inventory cost by using different selection and crossover options 

Selection 
Crossover 

Scattered Single point Two point Intermediate Heuristic Arithmetic 

Stochastic uniform $ 25743096.20 $ 25743955.02 $ 25743037.00 $ 25743096.20 $ 25738396.00 $ 25743096.20 

Uniform $ 25743096.20 $ 25743096.20 $ 25743096.20 $ 25743096.20 $ 25743096.20 $ 25743096.20 

Roulette $ 25743955.02 $ 25743096.20 $ 25743096.20 $ 25743096.20 $ 25739169.20 $ 25743096.20 

Tournament $ 25743096.20 $ 25743717.02 $ 25743955.02 $ 25743955.02 $ 25738455.20 $ 25743096.20 

Remainder $ 25743096.20 $ 25743955.02 $ 25743241.02 $ 25743096.20 $ 25738098.20 $ 25743096.20 

Figure 5: Genetic algorithms different options results 

 

Table 8. Selected parameters for genetic algorithms 

optimization approach 

Factors Selected Option 

Population Type Double Vector (default) 

Crossover Heuristic 

Function Tolerance 1e-8 

Constraint Tolerance 1e-8 

Crossover Fraction 0.8 (default) 

Max Generations 
100*number Of 

Variables (default) 

Population size 200 (default) 

Selection function Remainder 

Mutation 
Mutation adapt feasible 

(default) 

5.2 Hybrid Genetic Algorithms Optimization  

The second optimization approach was applied based 

on the obtained optimal crossover and selection options 

from the first approach. Hybrid function runs after 

genetic algorithm optimization terminates. The result 

was $25,727,565.00 with a time of 91.233 seconds. 

5.3 Linear Programming Optimization 

Using the interior point algorithm as the default in 

MATLAB, the third approach was able to achieve the 

optimal result and overcome GA approach in accordance 

with [55]. It attains the same result as the previous 

hybrid genetic algorithms in terms of production and 

inventory cost, which amounted to $25,727,565.00. 

Furthermore, this approach took only 0.327 seconds to 

solve, which is significantly less time than the 

optimization method used in the hybrid genetic 

algorithms. 

5.4 Manual Approach  

The manual approach yielded the poorest results, with 

a value of $25,754,790.60. This outcome is unsurprising 

given the reliance on trial and error, which is the 

fundamental basis of this approach. It is widely 

acknowledged that optimal results cannot be achieved 

using this method. 

5.5 Results Comparison  

A comparison was conducted to determine the most 

suitable approach to be utilized for the study. The results 

of each approach were obtained and analyzed in the 

following Figure 6. The genetic algorithm optimization 

approach demonstrated a difference of $16,692.40 from 

the manual method, while the Hybrid genetic algorithms 

and linear programming optimization approaches 

$25,737,000

$25,738,000

$25,739,000

$25,740,000

$25,741,000

$25,742,000

$25,743,000

$25,744,000

$25,745,000

Scattered Single point Two point Intermediate Heuristic Arithmetic

Crossover

Stochastic uniform

Uniform

Roulette

Tournament

Remainder
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achieved a reduction of $10,533.20 from the genetic 

algorithms optimization results, with a minimum 

outcome of $25,727,565.00. Despite its comparative 

success, the linear programming optimization method 

was ultimately chosen due to its superior computational 

speed, which resulted in a solution being obtained in just 

0.327 seconds. 

 

 

Figure 6: Comparison of results obtained from the different approaches 

          

5.6 Model Deliverables  

The optimal values of the decision variables are 

indicated in the Tables (9 -13), which appears after linear 

programming optimization has reached to the optimal of 

the total production and inventory cost by using 

MATLAB 2015a software.  

Table 9. Overtime production level for two products over 

four periods 

Product 
Period 

1 2 3 4 

Pipes ( 1) 580 960 960 1000 

Hot bends ( 2) 63 96 96 45 

 

Table 10. Inventory level of raw material for two products 

at the end of four periods 

Product 
Period 

1 2 3 4 

Pipes ( 1) 25 53 80 108 

Hot bends ( 2) 2 4 6 7 

 

Table 11. Inventory level of finished products for two 

products over four periods 

Product 
Period 

1 2 3 4 

Pipes ( 1) 20 310 100 0 

Hot bends ( 2) 52 36 0 0 

 

 

 

Table 12. Inventory level of raw material for two products 

at the start of four periods 

Product 
Period 

1 2 3 4 

Pipes ( 1) 2495 2693 2720 2858 

Hot bends ( 2) 86 92 94 81 

 

Table 13. Supply of raw material for two products for four 

periods 

Product 
Period 

1 2 3 4 

Pipes ( 1) 2495 2668 2667 2778 

Hot bends ( 2) 86 90 90 75 

 

Table 9 gives the amount of overtime production that 

is necessary to keep with the overall contracted demand 

over each period. Table 10 includes the inventory level 

of raw materials for the two products at end of each 

period. The inventory level of finished products is 

demonstrated in Table 11. Table 12 indicates the 

inventory level of raw material that must be available at 

the start of each period, while Table 13 gives the amount 

of raw material for each product, which is supposed to 

purchase from the supplier and must be in the company’s 

raw material store at the first of each period. 

5.7 Feasibility Evaluation 

After gathering all relevant financial statements and 

cost data for both the original and proposed plans, a 

feasibility analysis was conducted to evaluate the 

viability of the proposed model's outcomes. 



 

107 

 

The proposed APP model successfully met the 

delivery date requirements of each shipment by 

aggregating them into an overall demand, as shown in 

Table 1, through APP during the planning horizon. In 

contrast, the original planning system relied on a finish-

to-start approach for each project and full utilization of 

overtime hours, resulting in an inability to meet the 

required demand of particular shipments within the 

specified delivery timeframe 

Production costs are composed of several costs, 

including regular and overtime wages, raw material, 

production consumables, depreciation, and utilities.  

Depreciation costs are calculated based on the 

production duration, while utilities costs encompass a 

variety of expenses, such as electricity, water, security, 

cleaning, and fuel, which also vary with the production 

duration.  

The costs of raw materials and consumables are 

identical between the proposed planning approach and 

the original planning system, discrepancies are apparent 

in the wages, depreciation, and utilities costs. 

The proposed model successfully optimized the 

utilization of overtime hours over a four-month period, 

resulting in a decrease from 1,536 to 1,300 overtime 

hours, and a difference in overtime cost of $186,364.41, 

demonstrating the model's ability to save on overtime 

wages. 

The model achieved 1,400 regular hours for LSAW 

pipes and a corresponding amount of regular hours for 

hot bends, resulting in a total of 2,800 hours. In contrast, 

the original planning system utilized 2,688 regular hours, 

which is equivalent to a difference of 8 days between the 

two approaches. Despite this deviation, the proposed 

approach preferred the total wages cost over the original 

plan due to the optimal utilization of overtime hours, 

resulting in a variance of $139,132.36 or approximately 

4% less than the planned cost. 

The proposed planning approach resulted in a decrease 

in the production cost from $25,558,218.76 obtained 

from the original planning system, to $25,448,386.00, 

with a difference of $109,832.76. While the proposed 

model had a total wages cost difference of $139,132 in 

its favor, it is evident that the original planning system 

had lower depreciation and utilities costs, with a value of 

$29,299.60.This difference can be attributed to the 8-day 

variance between the two planning approaches, which 

resulted in lower utilities and depreciation costs in the 

original planning system. 

Additionally, the proposed model achieved a 14% 

reduction in inventory cost, equivalent to $45,478.40, 

thanks to the efficient utilization of both finished 

products and raw materials. Once again, the proposed 

model and LP solution outperformed the original plan. 

One of the critical features of the proposed model was 

its ability to eliminate the risk of delay penalties that 

result from inadequate planning, which had a significant 

impact on the outcome. The model was able to meet the 

required product quantities precisely on time, without 

any delays, thus avoiding incurring any penalty costs. 

 By way of contrast, the original plan incurred planned 

delay penalties, resulting in a total cost of $244,520.24. 

Despite the earlier discussed 8-day difference, the 

original planning system failed to meet the required 

delivery date of certain shipments, while the proposed 

model successfully met the required demand by 

aggregating the overall demand of each shipment 

according to its delivery date. 

To determine the expected profit, company's profit 

margin percentage was applied to each of the two 

product types, taking into account their respective total 

production and inventory costs, as obtained from the 

model. The total projected profit can be determined to be 

$2,803,529.16 

Finally, the differentiation between the planned and 

the proposed profit indicates that there is no equivalency 

between the original plan and the proposed plan. It 

shows the dominance of the proposed model, with an 

increasing of 9% from the planned profit with a $ 

226,842.48 gab.  

The previous feasibility has proofed the tremendous 

potential capabilities of the proposed APP optimization 

model against the original planning system in the 

company, and its direct magnificent impact in attaining 

maximum profitability with the minimum production and 

inventory costs, and at the same time to accomplish 

highest customer satisfaction without any needless delay. 

6. CONCLUSION  

Aggregate production planning has become crucial for 

meeting the demand of carbon steel pipes and hot 

induction bends, which are widely used in nowadays 

development projects, while optimizing associated 

production and inventory costs. In this study, a 

mathematical multi-product multi-period model was 

formulated to represent the aggregate production 

planning problem in the manufacturing of carbon steel 

pipes and hot induction bends, different optimization 

approaches, including genetic algorithms optimization, 

hybrid genetic algorithms, and linear programming, were 

applied and solved using MATLAB 2015a to select the 

optimal approach. The model was also applied to actual 

historical data to validate its feasibility against the 

original planning system in the company. The outcomes 

of this study can be summarized as follows: 

 Both the linear programming and hybrid genetic 

algorithms optimization approaches yielded 

superior results compared to the genetic 

algorithms optimization and manual methods. 

However, the linear programming optimization 

approach outperformed in terms of 

computational speed 

 The model has reduced overtime wages cost by 

12%. 
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 The proposed production cost and inventory 

cost were significant less than the planned costs 

with values of $ 109,832.76 and $ 45,478.40 

respectively.  

 The deliverables of the model were beneficial 

and effective as it achieved 9% higher profit 

then the original planned.  

Thus, the proposed model has demonstrated its 

practicality, functionality, efficacy, and applicability in 

real-world scenarios. However, for future research, 

certain modifications are recommended to enhance the 

agility and dynamism of the APP model. This would 

enable the model to better handle unexpected 

breakdowns, potential delays in raw material delivery, 

and fluctuations in raw material and production 

consumables costs throughout the planning horizon. 
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