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ABSTRACT 
This study proposes a novel predictive maintenance methodology for a forced blower 

employed in PVC powder manufacturing at TCI Sanmar, leveraging the power of machine 

learning. The Multilayer Perceptron (MLP) algorithm is identified as the most effective 

approach, demonstrating exceptional capability in anticipating machine failures. 

Following a comprehensive optimization process using GridSearchCV, the optimal MLP 

configuration achieves impressive performance metrics, including an accuracy of 92.5%, a 

recall of 95.5%, a precision of 95%, an F-score of 92.7%, and a Matthews Correlation 

Coefficient (MCC) of 0.85. Furthermore, the chosen MLP configuration consistently 

delivers high Area Under the ROC Curve (AUC) values of 0.961, surpassing other 

methods employed within the same industrial setting. This research not only addresses the 

immediate challenge but also offers valuable insights that can be applied and generalized 

to broader predictive maintenance strategies. The efficacy of the MLP algorithm 

underscores its strategic significance in this context, highlighting its potential to 

revolutionize intelligent and interconnected manufacturing processes. The proposed 

methodology demonstrably optimizes equipment reliability, minimizes downtime, and 

fosters proactive maintenance interventions, thereby generating valuable insights that 

contribute to enhanced industrial efficiency. 

Keywords:      Maintenance Strategy Optimization, Advanced Manufacturing 

Integration, Machine Learning Applications, Equipment Health Monitoring, Intelligent 

Manufacturing Insights 

 

 

NOMENCLATURE 

 
   The output of the MLP for class k.  

  
   

      
   

 The biases associated with the 

concealed layer and the result layer, 

correspondingly. 

   
   

 the weights responsible for 

connecting the input layer to the 

hidden layer for a specific neuron j. 

   
   

 The weights that establish the 

connections between the hidden layer 

and the output layer for a specific 

class k. 

   The input features. 

FN False Negative 

FP False positive 

FPR False Positive Rate 

TF True Negative 

TP True positive 

TPR True Positive Rate 

  The number of input features. 

  The number of neurons in the hidden 

layer. 

  The activation function applied to the 

summation of weighted inputs for 

each neuron. 
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1 INTRODUCTION 

The emergence of Industry 4.0 (I4.0) and the 

subsequent shift towards Industry 5.0 (I5.0) have 

profoundly transformed industrial maintenance practices. 

This transformation highlights the growing emphasis on 

condition monitoring methodologies designed to 

anticipate faults, minimize operational downtime, and 

prevent critical failures. Within these technological 

revolutions, the operational integrity of rolling bearings 

is paramount, as these crucial components directly 

influence overall equipment performance and reliability 

[1], [2]. 

Decades of research have focused on enhancing the 

resilience of critical machinery components. The 

integration of digitization and automation within 

Industry 4.0, and the subsequent human-centric approach 

of I5.0, have revitalized maintenance strategies. 

Intelligent systems leveraging machine learning (ML), 

artificial intelligence (AI), and evolving deep learning 

methodologies are now central to strengthening 

component durability [3], [4]. 

Maintenance strategies have evolved alongside industrial 

revolutions, transitioning from reactive paradigms like 

Run-to-Failure (R2F) to more proactive approaches. The 

shift from preventive maintenance (PvM), with its 

preplanned interventions, to condition-based 

maintenance (CBM), where interventions are triggered 

based on measured degradation indicators, reflects the 

changing nature of industrial paradigms [5], [6]. 

A previous exploration examined the efficacy of 

established algorithms, such as Support Vector Machines 

(SVM), Logistic Regression (LR), Random Forest (RF), 

K-Nearest Neighbors (KNN), and XGBoost, within the 

realm of predictive maintenance [7]. This study builds 

upon existing insights and delves deeper into the 

application of the Multilayer Perceptron (MLP) 

algorithm within the context of Industry 5.0's evolving 

industrial landscape. 

Within the spectrum of maintenance methodologies, this 

study identifies the MLP algorithm as a compelling 

approach that embodies the digital advancements of 

Industry 4.0 and the human-centric approach of Industry 

5.0. Renowned for its multilayered neural networks, the 

MLP algorithm has the potential to exceed the predictive 

capabilities of traditional algorithms, offering a powerful 

alignment with the principles of Industry 5.0 [8], [9]. 

The present study undertakes an extended exploration of 

predictive maintenance strategies, with a focus on the 

MLP algorithm within an established case study 

framework. This in-depth inquiry aims to evaluate MLP's 

efficacy in predicting machinery failures, striving to set 

new benchmarks in predictive maintenance 

methodologies. 

2 LITERATURE REVIEW  

This research draws upon a comprehensive literature 

review to evaluate the accuracy of a predictive 

maintenance framework tailored for a forced blower 

within an Egyptian industrial plant. Building on insights 

from five machine learning (ML) algorithms, this study 

evaluates the use of ball bearing vibration data to 

preemptively identify potential machinery failures. 

Vibration-based maintenance has long been recognized 

as a highly effective technique for detecting incipient 

bearing faults, as these faults exhibit unique, identifiable 

frequency patterns [7]. As demonstrated by the extensive 

literature review, the emergence of these fault patterns is 

closely linked to variations in both the machine's weight 

and operating speed [10]. 

Márquez et al. [11] addressed asset performance 

monitoring in capital-intensive industries with long-

lasting assets. Their novel approach combined Artificial 

Neural Networks (ANNs) with Data Mining (DM), 

specifically using Association Rule (AR) mining 

software for big data processing. This innovative 

sequence offers researchers new strategies for 

developing advanced predictive maintenance models 

capable of precise asset performance issue detection. The 

effectiveness of the proposed approach, demonstrated 

through complex monitoring scenarios, holds promise 

for improving Operational and Maintenance (O&M) 

practices. Orrù et al. [12] developed a machine learning 

framework for early fault detection in centrifugal pumps 

within the oil and gas sector. Their study utilized 

archival sensor data (temperature, pressure, and 

vibration) and employed Support Vector Machine 

(SVM) and Multilayer Perceptron (MLP) algorithms 

within the KNIME platform for data processing and 

training. The model achieved successful fault recognition 

and classification with high prediction accuracy, 

providing a reliable decision support system for 

maintenance personnel to prevent potential equipment 

failures. Capretz, et al. [13] introduced a Convolutional 

Neural Network (CNN) framework designed for 

predictive maintenance (PdM) by transforming 1-

dimensional data into a 2-dimensional image-like 

representation. Their approach, evaluated using datasets 

from building fans at Western University, outperformed 

traditional ML techniques. Achieving high accuracy rates 

of up to 98% for one dataset and 95% for another, this 

innovative method demonstrates promising potential for 

asset health prediction, surpassing established techniques 

in predictive maintenance. Ye, et al. [14] proposed the 

Adaptive Kernel Sparse Network (AKSNet), a novel 

deep neural network model for extracting fault features 

from one-dimensional vibration signals. AKSNet 

addresses limitations of traditional CNNs by adaptively 

selecting kernels for multi-scale feature extraction. It 

employs diverse branches with varying kernels, 

integrates channel-wise attention for feature fusion, and 

uses dynamic spatial attention to focus on salient 

regions. A sparse regularization layer is incorporated to 

reduce noise and highlight important features. 

Experiments demonstrate that AKSNet surpasses 

shallow neural networks and other DNNs in bearing fault 
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diagnosis, showcasing its superior feature extraction 

capabilities for multi-channel vibration signals. Chen et 

al. [15] presented an LSTM-based approach for 

predicting compressor failures in heavy-duty vehicles 

using aggregated sensor data from 2015 and 2016. Their 

goal was to optimize uptime through proactive 

maintenance scheduling. They framed the problem as a 

classification task and compared LSTM with the 

currently used Random Forest (RF) algorithm. While RF 

marginally outperformed LSTM in AUC score, LSTM 

exhibited greater temporal stability, consistently 

capturing the transition from healthy to faulty states and 

vice versa, even after repairs. This stability, crucial for 

reliable maintenance decisions, suggests that LSTM has 

the potential for superior practical applicability despite 

RF's slight performance edge in a single metric. Wu et al. 

[16] proposed a novel method for accurate failure 

prognosis in complex equipment maintenance by 

hybridizing backpropagation neural networks with a 

quantum-inspired multi-agent algorithm. Drawing 

inspiration from quantum computing theory and multi-

agent systems, this approach optimizes neural network 

parameters using a multi-agent strategy to address 

limitations like slow convergence and getting trapped in 

local minima. Experimental validation, incorporating 

numerical approximations and real vibrational data 

analysis from the University of Cincinnati's laboratory, 

yielded promising results, suggesting the potential of this 

technique as a valuable tool for industrial machinery 

failure prediction. 

In the study by Rajakumar et al. [17] they investigated 

methods to improve agricultural machine (AM) 

efficiency and fault detection using deep learning 

techniques. They utilized a deep convolutional neural 

network (DCNN) combined with a Levy flight 

optimization algorithm (LFOA) on smartphones to 

enhance fault detection accuracy, successfully 

identifying six specific faults in agricultural machines. 

This approach showcases a promising model for real-

time health monitoring and fault prediction in AMs, 

offering potential applications in optimizing machine 

performance and reducing downtime. 

3 METHODOLOGY 

3.1 Algorithm Evaluation in the Initial Research - 

A Comprehensive Overview  

The first research paper [18] established a robust 

foundation by evaluating five widely-used algorithms for 

maintenance prediction. Support Vector Machines 

(SVM), known for effective classification in high-

dimensional spaces [19], Random Forest (RF), 

employing an ensemble of decision trees for improved 

accuracy [20], Logistic Regression (LR), a linear model 

suitable for binary classification tasks [21], k-Nearest 

Neighbors (KNN), utilizing proximity-based 

classification [22] and XGBoost, a gradient boosting 

algorithm emphasizing model performance enhancement, 

were meticulously examined [23]. Each algorithm's 

unique characteristics were scrutinized to provide a 

thorough understanding of their applicability and 

performance in the context of maintenance forecasting. 

This study focuses solely on the Multilayer Perceptron 

(MLP), which is a powerful artificial neural network 

algorithm. We comprehensively compare MLP with 

previously examined algorithms, evaluating their 

strengths, weaknesses, and predictive capabilities within 

the realm of maintenance prediction. Particular emphasis 

is placed on optimizing MLP parameters to enhance its 

performance. This focused approach allows for a 

nuanced understanding of MLP's relative advantages and 

facilitates the recommendation of an optimal 

configuration for accurate maintenance forecasting. 

3.2 Multilayer Perceptron Algorithm (MLP) 

The Multilayer Perceptron (MLP) algorithm has 

emerged as a prominent tool in predictive maintenance 

due to its ability to learn complex patterns from 

historical data and effectively forecast machinery 

failures. This capability stems from MLP's robust neural 

network architecture, which allows it to identify intricate 

relationships within datasets, making it particularly well-

suited for prognosticating machinery health and 

predicting potential failures. 

Numerous studies have underscored the 

effectiveness of MLP in predictive maintenance contexts. 

In [24] demonstrated the superior predictive power of 

MLP in forecasting machinery failures, attributing its 

success to the algorithm's multilayered neural network 

architecture, which enables it to discern nuanced patterns 

in data indicative of impending faults. Similarly, in [12] 

showcased the adaptability of MLP in diverse industrial 

settings, emphasizing its ability to forecast equipment 

breakdowns with high accuracy rates compared to other 

conventional algorithms. Illustrating the MLP algorithm 

involves elucidating its architecture and functionality. As 

a type of artificial neural network, the Multilayer 

Perceptron (MLP) comprises an input layer, one or more 

hidden layers, and an output layer. These layers consist 

of interconnected nodes (neurons) that process 

information using activation functions to generate 

weighted outputs. During forward propagation, data is 

fed into the network, triggering computations across 

layers. This process enables the MLP to learn, adjust its 

parameters, and refine its predictive capabilities. as 

suggested by  [25] and [26] offer comprehensive insights 

into the architecture and workings of MLP in predictive 

maintenance scenarios. These studies delve into the 

specifics of training the MLP model, adjusting its 

parameters through backpropagation, and fine-tuning the 

network to enhance its predictive capabilities for 

machinery health prognosis. 

This amalgamation of real-world studies and theoretical 

underpinnings serves to highlight MLP's significance in 

predictive maintenance, both in its practical application 
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and its theoretical framework, paving the way for 

enhanced machinery prognostication and minimized 

downtime in industrial settings. An overview of the key 

components of a Multilayer Perceptron also shown it in 

Figure 1: Input Layer: Serving as the initial stratum of 

the MLP, this layer comprises neurons responsible for 

receiving input data. Each neuron within this layer 

corresponds to a distinct feature in the input dataset. 

Hidden Layers: Positioned between the input and output 

layers of a neural network, there may be one or more 

hidden layers. These concealed layers are composed of 

neurons that manipulate the input data using weighted 

connections and activation functions. The number of 

hidden layers and the quantity of neurons within each 

layer serve as Hyperparameters that can be fine-tuned to 

improve the network's performance. 

Output Layer: The ultimate layer of the MLP generates 

the network's output, determined by the specific task it is 

designed for. In binary classification tasks, it is typical to 

employ a single neuron with a sigmoid activation 

function. Conversely, for multi-class classification tasks, 

the count of output neurons aligns with the number of 

classes, and a softmax activation function is usually 

applied. 

 

Figure 1: Multilayer Perceptron Network [27]. 

Every connection linking neurons in adjacent layers is 

assigned a specific weight, nd each neuron employs an 

activation function on the weighted sum of its inputs. 

The network's performance is improved by adapting 

these weights during training. Multilayer Perceptrons 

(MLPs) are trained through methods like 

backpropagation and gradient descent, which aim to 

minimize a loss function. The selection of the loss 

function depends on the task at hand, for instance, using 

mean squared error for regression and cross-entropy for 

classification tasks [28]. The mathematical Equation (1) 

of MLP [29],[30] can be written as:  

     ∑ (   
     (∑     

       
 
   

 
   

  
    ))    

   
                                             

     (1) 

 

Where:  

     The output of the MLP for class k.  

     The input features. 

   
   

   the weights responsible for 

connecting the input layer to the 

hidden layer for a specific neuron j. 

   
   

   The weights responsible for 

establishing connections between the 

hidden layer and the output layer for 

a particular class, denoted as k. 

  
   

      
   

: The biases associated with the 

concealed layer and the result layer, 

correspondingly. 

 : The activation function, which is 

applied to the weighted sum of inputs 

for each neuron. 

    The quantity of neurons in the hidden 

layer. 

    The count of input features. 

 

3.3 Model Performance Validation 

3.3.1 Data Preprocessing for Enhanced Machine 

Learning 

Data preprocessing, a critical first step, transforms 

raw, unstructured data into a refined format compatible 

with the Multilayer Perceptron (MLP) architecture. This 

step ensures optimal model performance and facilitates 

meaningful analysis. In this project, each machine-

generated input is a two-second vibration signal derived 

from axis-acceleration recordings. These raw time-

domain signals are transformed into the frequency 

domain using Fast Fourier Transform (FFT). This 

transformation is crucial as features extracted from the 

frequency domain significantly enhance the MLP 

model's accuracy when assessing the bearing's condition 

[31]. 

Figures 2 and 3 will visually represent the analysis by 

showcasing samples of the vibration data and the 

relationship between Root Mean Square (RMS) values 

(mm/s) and frequency (Hz). These figures, generated 

from the collected data, will provide practical insights 

into the preprocessing steps. 

Additionally, Table 1 represents a sample of vibration 

data, will be presented to provide a detailed snapshot of 

the processed information. This table offers a structured 

view of the input data, facilitating a clearer 

understanding of the dataset employed for training and 

assessing the MLP model. Daily monitoring was 

conducted over a span of three years, and the readings 

were identified and categorized into warning and danger 

zones in accordance with the protocol ISO Standard [32]. 
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Figure 2: Spindle's outboard bearing diagram meets ISO standards [18]. 

 
Figure 3: Blower's outboard bearing shows ISO-acceptable faults [18]. 

 
Table 1. Sample of Vibration Velocity Measurements 

DATE TIME 
RMS 

ISO STANDARD LABEL 
mm/Sec 

01/01/ 
2013 

3:54:29 7.061 
JUST 

TOLERABLE 
3 

02/01/ 

2013 
3:54:48 7.629 

JUST 

TOLERABLE 
3 

03/01/ 
2013 

3:55:05 2.702 ALLOWABLE 2 

04/01/ 

2013 
3:55:23 6.583 

JUST 

TOLERABLE 
3 

05/01/ 
2013 

3:55:45 7.461 
JUST 

TOLERABLE 
3 

06/01 

/2013 
3:55:58 3.402 ALLOWABLE 2 

07/01/ 
2013 

3:56:45 6.943 
JUST 

TOLERABLE 
3 

08/01/ 

2013 
3:57:17 4.484 ALLOWABLE 2 

09/01/ 

2013 
3:57:41 7.578 

JUST 

TOLERABLE 
3 

10/01/ 

2013 
3:58:04 7.322 

JUST 

TOLERABLE 
3 

11/01/ 
2013 

3:58:27 4.707 
JUST 

TOLERABLE 
3 

12/01/ 

2013 
3:58:52 7.318 

JUST 

TOLERABLE 
3 

13/01/ 
2013 

2:10:23 7.48 
JUST 

TOLERABLE 
3 

14/01/ 

2013 
2:10:41 8.704 

JUST 

TOLERABLE 
3 

15/01/ 

2013 
2:10:56 3.797 ALLOWABLE 2 

16/01/ 

2013 
2:11:11 5.876 

JUST 

TOLERABLE 
3 

17/01/ 

2013 
2:11:29 9.681 

JUST 

TOLERABLE 
3 

18/01/ 

2013 
2:11:43 3.755 ALLOWABLE 2 

19/01/ 

2013 
2:12:33 8.682 

JUST 

TOLERABLE 
3 

20/01/ 

2013 
2:12:58 4.437 ALLOWABLE 2 

21/01/ 

2013 
2:13:20 7.196 

JUST 

TOLERABLE 
3 

22/01/ 

2013 
2:13:39 9.919 

JUST 

TOLERABLE 
3 

23/01/ 

2013 
2:14:06 5.759 

JUST 

TOLERABLE 
3 

24/01 

/2013 
2:14:28 6.687 

JUST 

TOLERABLE 
3 

25/01/ 
2013 

11:10:02 6.159 
JUST 

TOLERABLE 
3 

26/01/ 

2013 
11:10:20 7.124 

JUST 

TOLERABLE 
3 

27/01/ 
2013 

11:10:36 2.655 ALLOWABLE 2 

28/01/ 

2013 
11:10:54 5.638 

JUST 

TOLERABLE 
3 
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Furthermore, to ensure compatibility with the chosen 

MLP architecture, data preparation involves meticulous 

handling of null values within the original dataset, 

thereby enhancing model performance and analysis 

accuracy. 

3.3.2 Model Evaluation Metrics 

After model training, various evaluation metrics 

are used to assess its performance. These metrics 

measure the model's ability to accurately predict 

outcomes when presented with new, unseen data [33]. 

The confusion matrix serves as a structured table 

offering insights into the effectiveness of a model's 

predictions, particularly in classification scenarios. Table 

2 below demonstrates how the confusion matrix 

simplifies the visualization of true positives (TP), false 

positives (FP), false negatives (FN), and true negatives 

(TN). A correct prediction of a positive or negative value 

is termed as a true positive or true negative, respectively. 

Conversely, a false positive occurs when the model 

incorrectly predicts a positive value, while a false 

negative arises when a negative value is inaccurately 

predicted. An optimal model exhibits high accuracy, 

with most predictions concentrated on the diagonal of the 

confusion matrix, indicating successful classifications 

across the dataset. 

 
Table 2. Confusion Matrix Example 

Actual vs Predicted Positive Negative 

Positive TP FP 

Negative FN TN 

 

To determine the most efficient classification model, 

each algorithm undergoes testing using a 70/30 training-

testing split of the feature-rich dataset. Their 

performance is evaluated using the following metrics: 

 Precision: Measures a classifier's accuracy in 

identifying true positive instances shown in 

Equation (2). 

 

Precision = 
  

     
 (2) 

 

 Recall: Assesses the model's capability to 

identify all positive instances. The mathematical 

equation is expressed as Equation (3). 

Recall = 
  

     
    (3) 

 

 F-Score: Represents a combined measure of 

precision and recall. The mathematical Equation 

shown in Equation (4). 

 

        

      
                 

                    
 

 (4) 

 

 Accuracy: Represents the proportion of accurate 

predictions to the overall predictions generated. 

The mathematical Equation shown in Equation 

(5). 

 

          
     

           
 

     

(5) 

 

 Matthews Correlation Coefficient (MCC): 

Assesses binary classification model accuracy, 

yielding a score between -1 (disagreement) and 

+1 (agreement). The mathematical Equation 

shown in Equation (6). 

 

     
           

√
                
               

 
 (6) 

 

 Receiver Operating Characteristic (ROC) 

Curve: Illustrates the model's performance 

across various threshold settings, depicting the 

balance between the true positive rate (TPR) 

and false positive rate (FPR). A ROC graph is a 

two-dimensional Figure that contrasts TPR 

(sensitivity) on the y-axis and FPR equal one 

minus specificity on the x-axis to reflect the 

original two-class problems. TPR and FPR, 

both of which are defined in Equations (7), (8) 

and (9). 

 

                
  

     
 

(7) 

                
  

     
 

(8) 

                  
  

     
 

(9) 

 

3.4 Hyperparameter Tuning with GridSearchCV 

for Multilayer Perceptron: Optimizing Neural 

Network Performance 

Hyperparameter tuning is essential for optimizing ML 

models, especially Multilayer Perceptrons (MLPs). 

Parameters such as learning rate, batch size, and the 

number of hidden layers significantly impact MLP 

performance. GridSearchCV (Grid Search Cross-

Validation) enables a systematic exploration of the 

hyperparameter space, evaluating the MLP across 

various combinations. This process helps identify the 

optimal configuration for enhanced accuracy and 

generalization. For example, optimizing the number of 

neurons in each layer and selecting appropriate activation 
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functions can significantly improve the MLP's ability to 

learn complex patterns. 

As exemplified in [34], the application of 

GridSearchCV provides a structured and efficient 

method for navigating through Hyperparameter 

configurations, ensuring the fine-tuning of MLPs for 

optimal performance across diverse datasets and. By 

employing a systematic hyperparameter tuning approach, 

this study unlocks the full potential of Multilayer 

Perceptrons, paving the way for the development of 

highly effective Artificial Neural Network (ANN) 

models applicable to diverse machine learning domains. 

3.5 Case Study and Data Collection 

3.5.1 Overview of TCI Sanmar Chemicals facility 

 

This section investigates the functionality of an industrial 

forced air blower employed at the TCI Sanmar 

Chemicals facility in Port Said, Egypt. Notably, this 

facility is a prominent producer of Caustic Soda, PVC, 

and Calcium Chloride Granules within the MENA 

region. The specific focus of this investigation lies on the 

role of the blower in the final stage of PVC production. 

3.5.2 Configuration of the Forced Air Blower 

 

Figure 4 illustrates the forced air blower's configuration, 

which includes three elevated stages and a ground stage. 

In the production process, a slurry of PVC powder and 

water is treated. Water expulsion, powder drying, 

cyclone separation, and granule size control occur across 

consecutive stages. Rotary valves facilitate material 

transportation. 

3.5.3 Technical Specifications Overview 

 

The design and technical operating specifications of the 

blower are comprehensively outlined, detailing key 

parameters for analysis. Operating conditions encompass 

atmospheric air and gas handling, with an operating 

temperature range between Normal (114000 °C) and 

Design (135500 °C). The flow capacity is 1.12 m^3/h, 

with a density at suction of 50 kg/m^3. The pressure at 

suction is 750 mmwc, and the discharge pressure varies 

from Normal (29 mmwc) to Maximum (35 mmwc). 

Ambient conditions include temperatures of 80°C in 

Summer and 76°C in Spring, with relative humidity at 

the suction being a significant factor. 

In terms of mechanical design, the blower operates at a 

fan speed of 1490 rpm, featuring an impeller diameter of 

1726 mm. The critical speed is set at 2285 rpm, and the 

fan efficiency stands at 84.5%. The blower's power 

specifications include an installed power of 400 KW and 

a shaft power of 360 KW. 

3.5.4 Measuring Points and System Components 

 

Strategically positioned measuring points within the 

system, highlighted in Figure 5, play a vital role in data 

collection and performance analysis. 

3.5.5 Vibration Data Monitoring and Piezoelectric 

Transducer Specifications 

 

To monitor and analyze vibration data, the CSI 

accelerometer by Emerson is utilized. The analysis 

process is supported by the AMS Suite Machinery 

Health Analyzer Ver 5.51 software. Furthermore, 

specific details about the piezoelectric transducer 

employed for vibration data collection are provided. The 

transducer exhibits a sensitivity of 100 mV/g with a ± 

5% margin of error, and its operational frequency range 

spans from 0.5 Hz to 10000 Hz with a ± 0.5 dB tolerance 

[35]. 
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Figure 4: Schematic diagram of the structural composition of the production. 

 

 
 

Figure 5: Schematic diagram of the blower showing the vibration measuring points. 
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4 RESULTS AND DISCUSSION 

Building upon the initial research that explored various 

machine learning algorithms (SVM, RF, LR, KNN, and 

XGBoost), this study delves into the Multilayer 

Perceptron (MLP) algorithm for enhanced predictive 

modeling. The shift to a more complex neural network 

approach yielded promising results.  Rigorous 

experimentation using Python, with a 70/30 data split for 

training and evaluation, demonstrated MLP's superiority 

over the previously utilized models. This highlights the 

effectiveness of neural network paradigms for capturing 

complex data patterns and ultimately improving 

predictive modeling outcomes. 

4.1 Comparison of Performance Metrics for 

Classification Algorithms 

Each metric offers valuable insights into the algorithm's 

performance and guides the model selection process. 

Below, we explain each metric and its impact on 

decision-making: 

 Accuracy reflects the overall correctness of 

predictions, indicating the percentage of 

instances correctly classified. A higher accuracy 

implies a more reliable model, making it a 

crucial metric for performance evaluation. 

Results for each algorithm (SVM, RF, LR, 

KNN, XGB, MLP) are displayed in Figure 6, 

allowing for a visual comparison. However, in 

class-imbalanced cases, accuracy may be 

insufficient as it neglects false positives or false 

negatives. Thus, other metrics should be 

considered. 

 

Figure 6: Comparison of Accuracy Metric for Six 

Algorithms. 

The accuracy graph reveals XGBoost as the leading 

model, achieving an accuracy score of 0.889. This metric 

measures the overall correctness of the model's 

predictions. 

 Precision signifies the model's accuracy in 

identifying positive instances among predicted 

positives, minimizing false positives. Figure 7 

presents results for each algorithm, allowing 

precision comparison. Higher precision 

indicates fewer false positives, crucial in high-

cost scenarios like machine failure. 

 

Figure 7: Comparison of Precision Metric for Six 

Algorithms. 

The precision graph reveals a significant distinction for 

XGBoost, which achieves a score of 0.871. This 

indicates its superior ability to minimize false positive 

predictions compared to other models. 

 Recall, also recognized as sensitivity, centers on 

reducing false negatives. In Figure 8, the results 

for each algorithm will be depicted, facilitating 

a comparison of their recall performance. 

Elevated recall indicates a decreased rate of 

false negatives, a factor of importance in 

situations where overlooking positive instances 

incurs high costs, as seen in failure prediction. 

 

Figure 8: Comparison of Recall Metric for Six 

Algorithms. 

The Recall graph highlights MLP as the leading model 

with a score of 0.932. This metric emphasizes MLP's 

effectiveness in capturing a higher proportion of actual 

positive instances within the dataset, making it a 

favorable choice when capturing all positives is a 

priority. 
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 In the F-score, the results for each algorithm 

will be displayed in Figure 9, enabling a 

comparison of their F-score performance. The 

F-score is valuable in situations where there is 

an uneven distribution between classes or when 

both precision and recall carry equal 

importance. 

 

 

 

Figure 9: Comparison of F-score Metric for Six 

Algorithms. 

XGB is retained its superiority in the F-score graph with 

a score of 0.892, signifying a balanced precision and 

recall trade-off. Showcases XGB's the aptitude to sustain 

equilibrium between making precise positive predictions 

and capturing authentic positive instances. 

 In the MCC Figure 10, the results for each 

algorithm will be presented, allowing for a 

comparison of their MCC performance. MCC 

ranges from -1 to 1, where 1 indicates a perfect 

classification, 0 represents a random 

classification, and -1 implies a totally incorrect 

classification. 

 

Figure 10: Comparison of MCC Metric for Six 

Algorithms. 

In the MCC graph, a robust performance is demonstrated 

by XGB, scoring 0.720. This metric assesses the quality 

of binary classifications, with XGB's high MCC 

indicating a substantial agreement between predicted and 

actual classes.  

In Table 3, the metrics' results, as illustrated in [18], are 

presented alongside those for the MLP algorithm with 

default parameters compiled from all comparison figures. 

 
Table 3. Results of the Metrics before Using GridSearchCV 

Model Default Setting/default parameters Accuracy Precision Recall F-score MCC 

SVM C=1.0, kernel=’rbf’ 0.733 0.709 0.788 0.747 0.4626 

RF 
Number of estimators=100, minimum 

samples split=2 
0.856 0.862 0.847 0.855 0.6502 

KNN 
Number of neighbors=3, 

weights=’uniform’, algorithm=’auto 
0.860 0.851 0.873 0.862 0.6751 

XGB 
Number of estimators=20000, 

maximum depth=10 
0.889 0.871 0.915 0.892 0.7206 

LR C=1.0 0.784 0.835 0.924 0.848 0.5749 

MLP 

activation = ' ReLU ', learning rate = 

0.01 

hidden layer sizes = (5, ) 

0.821 0.763 0.932 0.839 0.504 

 

4.2 Impact of Hyperparamter Adjustment and 

GridSearchCV on Results  

The purpose of this evaluation is to assess the 

effectiveness of Hyperparameter tuning using 

GridsearchCV in optimizing the performance of the 

algorithms. By visualizing the changes in the metrics, it 

becomes possible to analyze the impact of these 

adjustments on the overall effectiveness of the models. 

Selecting whose change will affect the results of metrics 

and, consequently, the choice of the most suitable model. 

Following the implementation of Hyperparameter tuning 

with GridSearchCV employing a 5-fold cross-validation 

technique across various classification algorithms, a 

remarkable transformation in performance metrics has 

emerged. These metrics serve as vital indicators in 

assessing model effectiveness and suitability. The 

provided Figures for each metric vividly depict the 

substantial improvements observed: 

 Post-Hyperparameter tuning, accuracy metrics 

exhibit a significant uplift across all algorithms 

(SVM, RF, LR, KNN, XGB, MLP). This 

enhancement underscores a marked increase in 
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overall correctness in predictions, ensuring a 

more reliable model performance. Figure 11 

accompanying this metric depict the evident rise 

in accuracy values.

 

 

 

Figure 11: Comparison of Accuracy Metric before and After Adjustments.

Following grid search hyperparameter tuning, the 

accuracy graph reveals a notable shift, with MLP 

emerging as the frontrunner (0.925) among the six 

algorithms. This signifies a significant improvement in 

MLP's predictive capability compared to both its 

previous performance and other models. 

 Precision metrics reveal noteworthy 

advancements, highlighting the models' refined 

ability to correctly identify positive instances 

while markedly reducing false positives. A 

lowered rate of false positives, vividly 

illustrated in the associated Figure 12, signifies 

the increased precision achieved post-tuning. 

This enhancement is particularly crucial in 

fields like medicine or fraud detection where 

minimizing false positives is critical.

 

 

Figure 12: Comparison of Precision Metric before and after Adjustments.

In the precision comparison graph, MLP excels further 

with a precision score of 0.950, signifying its ability to 

limit false positive predictions more effectively than 

other algorithms. The substantial increase in precision 

underscores the successful optimization of MLP's 

parameters, making it a standout choice for precise 

positive classifications. 

 Following hyperparameter tuning, recalculated 

metrics reveal positive changes, particularly in 

recall. This indicates an enhanced ability for 

models to correctly identify true positive 
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instances and minimize false negatives, as 

evidenced by the significant improvements in 

Figure 13. These enhancements translate to a 

reduced rate of missing positive instances, 

leading to more accurate captures.

 

 

Figure 13: Comparison of Recall Metric before and after Adjustments.

The Recall graph shows MLP as the top-performing algorithm 

with a score of 0.935 post-Hyperparameter Tuning Grid 

Search. This highlights MLP's efficiency in capturing more 

actual positive instances compared to its previous performance 

and other models, showcasing its robustness in positive 

detection. 

 The F-scores, acting as a harmonious blend of 

precision and recall, exhibit remarkable 

progress across all algorithms post-tuning. The 

Figure 14 associated with this metric portray a 

noticeable rise in F-score values, indicating a 

more balanced performance between precision 

and recall. This balanced improvement ensures 

that both false positives and false negatives are 

equally addressed, crucial in scenarios with 

uneven class distributions.

 

 

Figure 14: Comparison of F-score Metric before and after Adjustments.

After grid search hyperparameter tuning, MLP remains 

dominant in the F-score graph, achieving a remarkable 

score of 0.927. This metric emphasizes MLP's ability to 

balance precision and recall, highlighting its consistent 

performance in making accurate positive predictions and 

effectively capturing true positives. 

 MCC values, after the Hyperparameter tuning, 

showcase a significant boost across all 

algorithms. This reflects an improved 
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correlation between observed and predicted 

binary classifications. The Figure 15 provided 

for MCC highlight the substantial increase in 

these coefficients, underlining better 

classification accuracy. MCC proves 

particularly beneficial in handling imbalanced 

datasets. These metrics collectively offer a 

comprehensive evaluation of model 

performance. Accuracy measures overall 

correctness, precision focuses on minimizing 

false positives, recall targets false negatives, F-

score balances precision and recall, and MCC 

considers the correlation in binary 

classifications.

 

 

Figure 15: Comparison of MCC Metrics before and after Adjustments.

The MCC comparison graph showcases MLP's 

exceptional performance following hyperparameter 

tuning, achieving a significantly improved score of 

0.850. This substantial increase signifies MLP's 

enhanced capability for reliable binary classification, 

demonstrating a strong agreement between predicted and 

actual classes. This positions MLP as a highly 

dependable model choice.  

The results post-GridSearchCV are represented in Table 

4, compiled from all comparison figures. 

Table 4. Obtained results after adjusting the Hyperparameter values for each algorithm 

Model Best parameters Accuracy Precision Recall F-score MCC 

SVM C=10, kernel=linear 0.852  0.794  0.951  0.865  0.628 

RF 
minimum samples split=3, number of 

estimators=6000 

0.885  0.898  0.869  0.883  0.743 

KNN 

algorithm=auto, 

number of neighbors=5, 

weights=distance 

0.873  0.869  0.877  0.873  0.714 

XGB 
maximum depth=3, number of 

estimators=10000 

0.914  0.917  0.909  0.913  0.800 

LR C=10 0.856  0.827  0.902  0.863  0.608 

MLP 

Activation = ' relu ', learning rate = 

0.001, 

hidden layer sizes = (16,16) 

0.925 0.950 0.955 0.927 0.850 

 

4.3 Comparative Analysis  

The algorithms' predictive performance was evaluated 

using Area Under the Curve (AUC) graphs. Under 

optimal hyperparameters, the Multilayer Perceptron 

(MLP) achieved the highest accuracy (92%), followed by 

Extreme Gradient Boosting (XGB) (91%), Random 

Forest (88%), K-Nearest Neighbors (KNN) (87%), 

Logistic Regression (LR) (85%), and Support Vector 

Machine (SVM) (85%). 

With default hyperparameters, the algorithms' initial 

prediction accuracies were: XGBoost (88%), KNN 

(86%), Random Forest (85%), Logistic Regression 

(83%), MLP (82%), and SVM (73%). The ROC curve 

plots the true positive rate (y-axis) against the false 
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positive rate (x-axis) as the classification threshold 

varies. Both the ROC curve and the Area Under the 

Curve (AUC) metric are used to evaluate the 

performance of classification models.  

The code displayed in the Figure 16 (a) and (b) 

encapsulates the process of generating ROC (Receiver 

Operating Characteristic) curves utilizing the best 

parameters obtained through GridSearchCV shown in 

Figure 17. 

from sklearn import metrics 

import matplotlib.pyplot as plt 

from sklearn.metrics import roc_curve, roc_auc_score 

import seaborn as sns 

from xgboost import XGBClassifier 

sns.set() 

(a)

 

from pandas.core.common import random_state 

 

classifiers=[LogisticRegression('C'=10,'kernel'=linear),SVC(probability=True), 

                    

KNeighborsClassifier('algorithm'=auto,'number_of_neighbors'=5,     'weights'=distance), 

 

XGBClassifier('maximum depth'=3, 'number_of_estimators'=10000), 

 

RandomForestClassifier('minimum_samples_split'=3, 'number_of_estimators'=6000), 

 

MLPClassifier('Activation' = relu , 'learning_rate' = 0.001,'hidden_layer_sizes' = (16,16))] 

 

# color-marker-linestyle 

CML = ['go-', 'r*--', 'b^-', 'cs--', 'mx-','k+-'] 

# Define a result table as a DataFrame 

result_table = pd.DataFrame(columns=['classifiers', 'fpr','tpr','auc']) 

# Set name of the classifiers as index labels 

result_table.set_index('classifiers', inplace=True) 

result_table 

(b) 

Figure 16: Key Steps in ROC Analysis and Classifier setup for predictive Modeling in Python. (a)  Necessary Library 

imports for ROC Analysis. (b) Classifier setup and Result Compilation with Pandas Data Frame.
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Figure 17: ROC Curve Analysis. 

 

A diagonal line on the ROC curve indicates random 

classification, where true positives and false positives 

occur at equal rates. The AUC (Area Under the Curve) 

measures the classifier's performance by calculating the 

area between the ROC curve and the diagonal line. A 

higher AUC signifies better performance, allowing for 

comparison between different models [36]. The diagonal 

line on the ROC plot, connecting (0, 0) and (1, 1), 

represents random chance performance. This scenario 

implies that the model's ability to distinguish between 

classes is no better than random guessing, with equal 

probabilities of correct and incorrect predictions. Points 

above the diagonal indicate better-than-chance 

performance, meaning the model's true positive rate 

(correctly identifying positive cases) exceeds its false 

positive rate (incorrectly identifying negative cases). 

Conversely, points below the diagonal suggest worse-

than-chance performance, where the model has a higher 

rate of false positives than true positives. 

5 CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

In conclusion, this research offers valuable insights that 

extend beyond the immediate scope of the study, 

concentrating on the formulation of an efficient 

predictive maintenance methodology for a forced blower 

in PVC powder manufacturing at TCI Sanmar. The 

significant outcomes of investigation are as follows: 

 

 The utilization of machine learning algorithms 

demonstrated remarkable adaptability in 

analyzing maintenance-related data from TCI 

Sanmar Chemicals' industrial air blower, 

representing a substantial advancement in 

predictive maintenance strategies and promising 

more accurate and proactive equipment upkeep. 

 

 In a comprehensive evaluation that considered 

various algorithms used in previous research 

related to the same case—namely, SVM, LR, 

KNN, XGBoost, RF and MLP algorithms stood 

out as the top performance. With an MCC of 

0.850 and consistently high AUC values, the 

MLP algorithm showcased unparalleled 

efficacy in accurately foreseeing machine 

failures compared to its counterparts. 

 

 The robust performance of the MLP algorithm 

reaffirms its superiority over other algorithms 

used in the same industrial setting, underscoring 

its reliability as a predictive maintenance 

solution. Its ability to outperform previously 

employed algorithms in predicting potential 

equipment malfunctions establishes it as a 
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dependable tool for proactive maintenance 

interventions. 

 

 This exploration underscores the strategic 

importance of employing the Multilayer 

Perceptron algorithm in predictive maintenance 

frameworks. Its precision in predicting faults 

not only outshines its counterparts from 

previous research but also presents a valuable 

opportunity for industrial sectors to enhance 

equipment reliability, minimize downtime, and 

optimize maintenance schedules for improved 

operational efficiency. 

5.2 Future work  

The proposed proof-of-concept, which shows how 

machine learning aids in the analysis and provision of 

early data from industrial facilities to anticipate the status 

of industrial machinery, was the subject of the study. 

Based on a thorough case study on vibration monitoring 

the following considerations are recommended in future 

work: 

 

 Increasing data volume as a larger training 

dataset can potentially improve model 

performance by providing the model with more 

information to learn from. 

 Merging machinery malfunction causes with 

sensor data enhances predictive capabilities, 

enabling the model to anticipate malfunctions 

and identify their specific types or causes, 

offering actionable insights for tailored 

maintenance strategies. 

 Creating an integrated online platform that 

seamlessly collects data from machines, 

utilizing sensors as a prime example, and 

directly feeds it into the algorithm, constitutes 

an efficient system for predictive maintenance 

processes. 

 Utilizing deep learning algorithms can 

significantly enhance the efficiency of 

predictive maintenance strategies. 
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