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ABSTRACT 
Human Activity Recognition (HAR) is considered a multidisciplinary field that different 

branches of science contribute to its advancements. Vision-Based HAR is one of the 

means to use Computer Vision (CV) and its techniques to study and analyze the behavior 

of humans within the context of videos. Recently, Video Anomaly detection (VAD) has 

gained vast attention and becomes a popular research topic in recent years. This is due to 

their enormous potential in many fields such as healthcare monitoring, surveillance/crowd 

analysis, sports, Ambient Assistive Living (AAL), event analysis, and security. Manually 

detecting and analyzing inappropriate behavior was a very challenging task, especially in 

real-time scenarios which led to a great demand for smart surveillance systems. In recent 

work, deep learning approaches have been dominated in this field as they outperform the 

performance of other traditional methods. This literature provides the latest algorithms for 

anomalous human activities, the challenges facing this field, and a comprehensive review 

of the State-Of-The-Art (SOTA) approaches including the feature extractor, the method, 

and the loss function. In addition, we propose the effect of applying swarm optimization 

algorithms in the anomaly detection field in recent years. Moreover, it presents a 

chronological background to the subject with an emphasis on the recent advancements in 

the VAD field.  

Keywords:  Video Anomaly Detection, Video Surveillance, Video Transformer 

Networks, Swarm Optimization. 

 

 

1 INTRODUCTION  

The Human Activity Recognition (HAR) has become a 

trending research direction in Computer Vision (CV) 

because of sensors and accelerometer availability, low 

power consumption, live data streaming, and 

advancements in computer vision, Machine Learning 

(ML), and the Internet of Things (IoT). HAR is 

frequently linked to the process of identifying and 

naming human activities in real life through sensory 

perceptions such as walking, sleeping, running, sitting, 

standing, showering, cooking, driving, opening the door, 

abnormal activities, etc. [1,2]. It can be utilized in visual 

surveillance systems [3,4] to detect potentially dangerous 

human actions, as well as autonomous navigation 

systems [5] to detect human behaviors and ensure safe 

operations. It is also crucial for a variety of other 

applications, including video retrieval [6], home 

monitoring, human-robot interaction [7], Human-

Computer Interfaces (HCI) [8], healthcare by tracking 

elderly people sitting alone [9,10], smart cities [11] and 

sports [12,13]. 

    The advances in CV techniques and hardware 

accelerators made it possible to process the huge amount 

of data produced by live-stream cameras [14,15]. As a 

natural consequence, Abnormal Human Action 

Recognition (AbHAR) has become an interesting field in 
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CV due to the numerous applications that directly benefit 

from it such as public security, monitoring workers’ 

safety during working hours, healthcare systems for the 

elder people, and the need for intelligent video 

surveillance systems (IVSS). In the past few years, 

intelligent video surveillance systems (IVSS) played a 

vital role in the computer vision field because of the 

increasing demand for security and the growing number 

of surveillance cameras outdoors and indoors. IVSS is 

capable of automatically detecting anomalous actions 

such as crimes, fights, traffic accidents, riots, 

kidnapping, and catastrophic events, as well as 

anomalous entities such as weapons in critical locations 

and abandoned objects. However, surveillance video 

analysis faces several challenges, one of which is 

detecting anomalous events, which demands extensive 

human effort and is time-consuming. As a result, relying 

on the human factor alone is insufficient, and IVSS is 

developed to assist in such scenarios. 

     In the context of Vision-Based Anomaly Detection 

(AD), anomalous events are considered rare, and their 

lifetime is relatively short compared to the complete live 

stream of the surveillance system. This is one of the 

main challenges in the AbHAR systems. Hence, different 

approaches to tackle this problem and to offer a robust 

framework for AbHAR have been presented in the last 

decade. In terms of the available surveys on HAR, 

numerous studies have been conducted [1,15–20]. On the 

other hand, only fewer surveys related to Deep Learning 

(DL) based VAD, are proposed.  

    Nayak et al. [21] presented an analysis of the 

performance evaluation approaches in terms of datasets 

and various evaluation criteria. Dhiman et al. [22] 

provided feature designs in videos of abnormal human 

activity recognition concerning the context or 

application. Besides, they introduced the drawbacks of 

each feature technique for 2D and 3D AbHAR 

categories. Mabrouk et al. [23] studied various levels of 

an intelligent video surveillance system and discussed 

some limitations of the recognition of abnormal 

behavior. Rezaee et al. [24] identified several automatic 

and real-time monitoring approaches for abnormal event 

detection in security applications to recognize dynamic 

crowd dynamics. Suarez et al. [25] discussed the effect 

of DL in the anomaly detection field and the 

classification of different DL methods relating to their 

objectives. Caetano et al. [26] presented a review of a 

large number of STOA methods and datasets related to 

the VAD field and they discussed the application-

oriented issues related to deep anomaly detection for in-

vehicle monitoring. 

      Optimization methods have previously been 

widely used in many fields, including Machine Learning 

(ML), data science, engineering, and many others. These 

methods seek the best values for parameters, weights, or 

configurations that result in the best solution to a given 

problem. They are useful in decision-making and 

problem-solving processes because they automate the 

search for the best solution in complex scenarios where 

an exhaustive search is not possible. Swarm optimization 

algorithms, which are inspired by the collective behavior 

of natural swarms, such as bird flocks, fish schools, and 

insect colonies, are one of these methods. There are 

many types such as Particle Swarm Optimization (PSO) 

[27], Artificial Bee Colony (ABC) [28], Ant Colony 

Optimization (ACO) [29], Firefly Algorithm (FA) [30], 

Bat Algorithm (BA) [31] and many others. 

      To our knowledge, this survey is the first to 

introduce swarm optimization in a VAD survey. 

Moreover, an extensive overview of the recent weakly-

supervised SOTA models related to AbHAR will be 

explored with their availability codes. 

      This survey is structured in five sections as 

follows: section 2 will explore a discussion of Abnormal 

Human Activity Recognition (AbHAR). Section 3 

provides a brief review of swarm optimization 

algorithms and their applications in VAD. Section 4 will 

be dedicated to proposing the challenges that face the 

AbHAR domain. The recent SOTA frameworks 

proposed in the field of VAD are introduced in Section 

5. Finally, the survey will be concluded with a clear 

point of view of the current status of the field and the 

possible future directions in the last section. 

 

 

2 ABNORMAL HUMAN ACTIVITY 

RECOGNITION (ABHAR) 

Despite the popularity of the HAR topic and its 

various applications in many fields, AbHAR has become 

one of the trendiest topics in recent research, especially 

in security issues using video surveillance systems. The 

area of research in HAR seems to be close to that of 

AbHAR but they are not the same. Deep anomaly 

detection methods must be used to create new 

surveillance and monitoring systems that do not rely only 

on human supervision, lowering the risk of the 

aforementioned drawbacks. With the increasing number 

of crimes and the essential need for security in public 

areas like malls and banks, the demand for automotive 

surveillance systems becomes crucial. In this section, we 

will introduce more information related to this domain 

such as the anomaly definition, the framework of VAD, 

the learning mechanisms of anomalies, the types of 

anomalies, the detection learning approaches, and the 

feature learning methods. 

2.1   Anomaly Definition 

AbHAR and VAD are terms used interchangeably and 

are defined as the odd or irregular patterns found in 

videos that do not conform to the normal trained 

patterns. According to [32], VAD systems are either 

manually built by experts setting thresholds on data or 

constructed automatically by learning from the available 

data through Machine Learning (ML). VAD is widely 
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used in many applications such as fraud detection 

[33,34], image processing [35,36], sensor networks 

[37,38], medical health [39,40], intrusion detection [41], 

IT security [42–44], and social media [45,46]. Fig. 1 

shows an illustrative example of a normal and abnormal 

frame in a sample of the UCF-Crime dataset [47], where 

(a) is a normal frame of a woman withdrawing money 

from an ATM and (b) is the abnormal frame that shows a 

man steal the woman which has recorded as an anomaly 

activity there in the red window. 

 

 
 
Figure 1:  A sample from the UCF-Crime dataset (Robbery 

part) [47]; a) is a normal frame from the video, while b) is 

an abnormal frame of a woman being stolen. 

 

2.2 General Framework of Anomaly Detection 

There are some sequential steps to form a complete 

surveillance system for VAD. As shown in Fig. 2, the 

video data are firstly captured or recorded by a 

surveillance camera, then segmented into several frames 

to determine any significant changes that occur in the 

content. After that, some pre-processing steps are 

performed according to our needs such as noise removal, 

resizing the frames, illumination adjustment, and others. 

The third step involves the extracting of features either 

by traditional or deep-based methods – which will be 

explained later in subsection 2.4 -. The next step is 

developing the model either for classification to 

determine if the presented video is normal or not or for 

detecting the anomaly type in the video such as fighting, 

a car moving in a wrong direction, robbery, etc. Lastly, 

depending on the model used, a score is generated to 

detect if it is a normal or abnormal video. 

 

 

 
 
Figure 2:  General framework of VAD. After collecting 

the data and performing some pre-processing on it, features 

can be extracted by different methods. Depending on the 

project objective, the model is chosen which generates a 

score to classify the data as normal or abnormal. 

 

2.3 Anomaly Detection Learning Approaches 

Based on the availability of annotated data during the 
training process, AD techniques can be categorized into 
three classes supervised, unsupervised, and semi-
supervised learning. In the Supervised learning scheme, 
the normal and the abnormal data are associated with 
labels, which means all anomalies are known before 
[48,49]. Support Vector Machine (SVM), K-Nearest 
Neighbors (KNN), and Decision Trees (DT) are 
commonly used algorithms for this type. However, it is 
not suitable in most situations to label anomalies in 
videos due to many aspects.  

   In the unsupervised anomaly learning approach [50–
57], the model learns the pattern of the normal data then 
it’s used to predict if the new data point is an anomaly or 
not. The main aim is to detect previously unseen rare 
events without any previous information about these, 
which means the dataset points are not labeled as normal 
or abnormal. That is why unsupervised learning is more 
popular than supervised in the AD area. The main 
obstacle here is defining normal behavior in its context. 
Some of the popular algorithms used are K-means, Local 
Outlier Factor (LOF), and Auto-Encoders (AE).  

   Semi-supervised learning is widely used in AD as it 
grosses the benefits of both supervised and unsupervised 
learning methods [47,58–64]. In this type of learning, 
only the normal activity class is labeled while the 
abnormal class is not annotated with any labels. AE is one 
of the most popular approaches regarding the Semi-
Supervised technique for AD. 

2.4 Feature-Learning Based Methods 

Feature extraction is one of the major primary steps in 

any CV pipeline such as image classification [65], VAD 

[66], and many others. Generally, the most frequent 

method for detecting visual anomalies is to extract 

features and model learning. Optimum choice of features 

plays a key role in detecting specific anomalies. Features 

can be extracted in AbHAR using two techniques: 

handcrafted (non-automatic) or deep-based (automatic 

feature extraction) approaches. Some surveys have 

discussed the difference between these two approaches 

[67,68]. 

2.4.1 Handcrafted Features  

 

The handcrafted features method [69,70] is based on 
extracting low-level features (motion or texture) from the 
input data. Extracting features using well-defined feature 
descriptors - such as Scale Invariant Feature Transform 
(SIFT) [71], Speeded Up Robust Features (SURF) [72], 
and Binary Robust Independent Elementary Features 
(BRIEF) [73]- requires high expertise in the problem 
domain. Thus, different trials are needed to select and 
fine-tune the best technique. Moreover, feature selection 

(a)  (b)  
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and preprocessing are necessary to prepare the features 
before the modeling step. the main advantage of this 
approach is that it produces an understandable set of 
features that can be visualized. However, this method 
faces some challenges such as the time-consuming in 
extraction of features and the need for an expert. The 
main obstacle is that the dataset will probably contain 
occlusion issues and high complexity in crowded areas.  

      Generally, handcrafted feature approaches are 
classified into two main categories: object-oriented where 
detection of anomalies is by extracting objects or 
trajectories, and non-object-oriented where pixels or 
optical flow features are used in the AD. The most 
common methods used are trajectory-based approaches 
[74,75], spatial-temporal approaches, Silhouette-based 
approaches [76], appearance-based approaches [77],  
optical flow-based descriptors [78], Histograms of 
Oriented Gradients (HOG) [79], and Histogram of 
Oriented flow (HOF) [80]. 

2.4.2 Deep-Based Features 

 
      Deep-based feature extraction methods depend mainly 
on DL architectures. Within the context of transfer 
learning fine-tuning, a pre-trained model such as VGG16 
or ResNet-50 can be used to extract the features and 
forward them to the modeling block directly. Adopting 
this technique can generally save time and reduce the 
overhead cost and complexity of the training pipeline 
compared to the aforementioned method, as it skips the 
manual feature selection. In addition, it can be used to 
train the neural network from scratch. This will allow the 
network to capture and learn complex representations and 
patterns. The quality of these patterns depends on several 
factors such as the network structure, the optimizer, and 
different hyperparameters such as the learning rate. On 
the other hand, it is not trivial to visualize and understand 
the learned patterns.  
    The most popular methods in DL are Convolution 

Neural Networks (CNN) [81,82], Recurrent Neural 
Networks (RNN), Long Short-term Memory (LSTM) 
[83], Auto-Encoders (AE), Variational Auto-Encoders 
(VAE) [84,85], Deep One-Class Classification [86,87], 
Generative Adversarial Networks (GAN) [88,89] and 
Transformers [90,91]. Some popular feature extractors 
are used with the previously mentioned methods to 
extract spatial features, temporal features, or spatial-
temporal features in videos such as 3D Convolutional 
Network (C3D) [92], Inflated Convolutional Network 
(I3D)  [93], Temporal 3D ConvNets (T3D) [94], 
Temporal Segment Networks (TSN) [95] and Action 
Vector of Locally Aggregated Descriptors (Action 
VLAD) [96].  

      Generally, DL methods are dominant now in the 
CV field and are superior to the traditional methods, but 
traditional methods are still effective in solving some 
problems. Traditional algorithms are well-known, 
transparent, and designed for performance and power 
economy, but Deep-Based approaches provide better 
accuracy and variety at the expense of a lot of 
computational power. In different contexts, it might be 

useful to combine the Handcrafted and the Deep-Based 
features. Hybrid approaches of both methods are 
performed such as in healthcare [97,98], image 
classification [99], and video analysis [100]. 

 

3 SWARM OPTIMIZATION IN 

ANOMALY DETECTION 

 Swarm optimization is a type of optimization 

algorithm that is inspired by the collective behavior of 

social organisms, specifically swarms in nature. These 

algorithms are intended to solve complex optimization 

problems by simulating natural system behaviors and 

interactions such as bird flocks, fish schools, ant 

colonies, and bee hives. In the 1980s, the concept of 

swarm intelligence was first proposed. Since then, it has 

piqued the interest of scientists in a wide range of 

disciplines, including engineering, economics, computer 

science, artificial intelligence, and many others. In recent 

years, swarm optimization algorithms have received a 

great deal of attention as modern optimization methods 

that achieved remarkable results in many fields, as 

traditional optimization methods rely on parameter 

selection and require the objective function to have high 

mathematical performance.  

   The fundamental concept behind swarm 

optimization is based on the emergence of intelligent 

global behaviour from the interactions and cooperation 

of simple individual agents, also known as "particles," 

"agents," or "individuals." These agents communicate, 

share information, and adjust their behaviour in response 

to local and global information, to collectively optimise a 

given objective function. There are many algorithms: one 

of the most popular is PSO algorithm. In PSO, a 

population of particles moves through the search space, 

adjusting their positions based on their own experience 

(personal best) and the overall swarm's best experience 

(global best). This constant movement and updating 

leads the swarm to optimal solutions. 

   Few surveys worked on swarm optimization in the 

AD field. Mishra et al. [101] reviewed different swarm-

based anomaly detection methods in the cyber-security 

field. Iftikhar et al. [102] provided a survey of swarm 

applications in network security. In addition, a review 

was published on applying swarm in intrusion detection 

systems on various domains by Nasir et al. [103]. 

Unfortunately, there are no surveys done in VAD 

specifically may be due to the low number of papers in 

this field. 

  Swarm was first introduced in the VAD field by 

Vagia et al. [104] who combined swarm intelligence and 

histograms of oriented gradients (HOG) descriptor to 

form a new feature capable of determining normal 

regions using the SVM [105] framework. Some surveys 

introduced the methods of swarm optimization 

algorithms. Wei et al.  [106] discussed seven of the 

recent optimization algorithms that have been introduced 
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since 2010 such as Fireworks algorithm [107], Pigeons 

Algorithm (PA) [108], Dragonfly Algorithm (DA) [109], 

Moth-flame Optimization Algorithm (MFOA) [110], 

Butterfly Optimization Algorithm (BOA) [111], and 

crow search algorithm (CSA) [112] and Whale 

Optimization Algorithm (WOA) [113]. Rezvanian et al. 

[114] provided an overview of ACO which is one of the 

popular swarm algorithms that simulates the behavior of 

ants in searching for food. 

 

4 CHALLENGES IN ANOMALY 

DETECTION  

  Real-world anomalous events are complex and 

varied, so many obstacles still face the VAD field. It is 

difficult to make a comprehensive list of all possible 

anomalous events. Thus, in this section, we will present 

some of the challenges that face the VAD field. It is 

difficult to define abnormal moments because there is no 

clear distinction between normal and abnormal events, 

which leads to more false alarms. In addition, anomalies 

in videos are irregular, and rare, and can be localized or 

distributed spatiotemporally in complex scenarios. 

Furthermore, under realistic circumstances, the same 

behavior could be normal or abnormal depending on the 

environment. For example: running in the middle of the 

road is unusual, whereas running in a park is not. As 

previously stated, anomalies are uncommon data 

instances, as opposed to normal instances, which 

frequently account for a significant portion of the data 

leading to an imbalance of the data. As a result, 

collecting a large amount of labeled abnormal instances 

is difficult. Moreover, noise is considered an 

abnormality, so it is a big challenge to distinguish 

between it and the real abnormal events in the videos. As 

a result, it will affect the actual accuracy of the model. In 

addition, real-time anomaly detection is limited by high 

computational and infrastructure costs. One of the main 

challenges is the availability of high-configuration 

hardware to deal with long and high-quality videos and 

to keep up with the latest deep-learning models. Also, 

there is still a scarcity of large-scale wide-ranging 

anomaly data for training and validation. Moreover, 

annotating large data is highly costly. Hence, there is a 

need for good benchmarks to evaluate the algorithms 

used for VAD and localization. Other Environmental 

issues affect the efficiency of algorithms such as low 

resolution, variations in background, environmental 

fluctuations, and occlusions, scaling of the moving 

target, light intensity changes, and the excessive cost of 

collecting data. 

 

 

 

 

5  RECENT STATE-OF-THE-ARTS 

(SOTA) 

 In recent years, several papers used deep learning-

based models to tackle the problem of VAD. They 

outperform performance by 

leveraging deep neural networks' powerful representation 

capabilities. Models related to AbHAR datasets tend to 

combine a feature extractor and a classification block 

incorporated with a custom loss function to mitigate the 

effect of having only video-level labeling. Experiments 

proved that weakly supervised methods are achieving the 

best performances for VAD as depicted in Table 1.   

       Sultani et al.  [47] introduced the problem of VAD 

in the context of Multiple Instance Learning (MIL) [115] 

using only weakly supervised labels. They used a 3D 

Convolution Network (C3D) to extract the features from 

the dataset. In their approach, normal and anomalies 

videos are considered as bags designed for a network 

that processes video clips independently from each other 

with a novel hinge loss function. Bags that have at least 

one abnormal snippet is considered positive bag while 

the bag that has only normal snippets is a negative bag. 

The bag-level labels are used to learn the instance-level 

anomaly scores. Moreover, in their paper, they 

introduced a large-scale dataset called UCF-Crime for 

training and testing weakly supervised anomaly detection 

methods. 

  Several papers followed [47] by using the same 

framework but advocated some improvements. Zhong et 

al. [62] introduced a novel way to use Graph 

Convolutional Networks as noisy label cleaners along 

with an action classifier. They signified that during 

training MIL methods suffered from error propagation. 

This approach managed to overcome the issue of having 

video-level labeling in the UCF-Crime dataset and 

converted the problem into a direct classification task 

based on a cross-entropy function and a temporal-

ensembling strategy. Although this method gives better 

performance, it is computationally expensive. Zhang et 

al.  [63] adopted the approach in [47] as their baseline 

and introduced a new inner bag loss (IBL) to reduce the 

gap between the lowest and highest scores in the 

negative bag while increasing it in the positive one. They 

replaced the first fully connected layer (FCN) of  [47] 

with a temporal convolution network (TCN) [116] to 

connect between the preceding and the current 

information of the instance followed by two fully 

connected layers.   

  Zhu et al. [117] modified the model [47] by adding 

an attention block [90] and making use of the PWC-Net 

[118] to extract the motion-aware features. Morais et al.  

[56] detected the human anomalies using the Spatio-

Temporal patterns of skeleton features. However, the 

algorithm depends on the quality of the skeleton tracking 

and detection so it cannot be applied to low-quality 

videos. [119] improved the approach in Sultani et al. [47]  

by fusing both the weak and self-supervised schemes and 
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adding a new term to the loss function to enhance the 

performance. Moreover, they used a Random Forest 

(RF) model to combine the outputs at the score level of 

the best top 3 performance models and developed a new 

dataset named UBI-Flight.   

    Lu et al. [55] addressed the problem of few-shot 

learning [120] in anomaly detection of large videos by 

using a meta-learning-based mechanism. They used 

GANs to spot the anomalies in a previously unseen scene 

with only a few frames instead of collecting a huge 

amount of data for each scene.  Doshi et al [121] 

presented an online algorithm named Multi-Objective 

Neural Anomaly Detector (MONAD) to detect 

anomalies in streaming videos with minimal detection 

delays. This algorithm involves two modules: a deep 

learning-based feature extraction module and a statistical 

decision-making module. The feature extraction module 

is a combination between GAN-based frame prediction 

and YOLO object detector [122] to extract the important 

features, while the other module is a nonparametric 

statistical algorithm that uses the extracted features for 

online anomaly detection.  

    Wu et al.  [123] introduced a novel large violence 

dataset called XD-Violence which contains both videos 

and audio signals. In addition, they proposed a neural 

network with three parallel branches which are the 

holistic branch, localized branch, and score branch to 

capture the different relations between video snippets. 

Moreover, online detection was also performed. Ullah et 

al. [124] reduced the time complexity using a pre-trained 

ResNet-50 [125] to extract the features followed by a 

multi-layer Bi-directional Long Short-term Memory 

(BDLSTM) model to classify the normal or the abnormal 

events in surveillance scenes.  

    Instead of processing video clips independently 

from each other as in  [47], Kamoona et al. [60] treated 

the video instances (clips) as sequential visual data and 

they also introduced a new loss function that maximizes 

the mean distance between the normal and the abnormal 

instance predictions. This loss function is smoother than 

the one of  [47]. Tian et al. [59] introduced a novel 

method named Robust Temporal Feature Magnitude 

learning (RTFM). RTFM learns a temporal feature 

magnitude mapping function that recognizes rare 

abnormal snippets from abnormal videos with many 

normal snippets while maintaining a wider margin 

between normal and abnormal snippets.  

    Some papers presented Transformers for anomaly 

instances in videos. Yuan et al.  [91] combined the U-Net 

[126] and the Video Vision Transformer (ViViT) [127] 

to capture wider global contexts and deeper temporal 

information. They named their model TransAnomaly, 

which is a prediction-based VAD method. In addition, 

the model can execute anomaly localization. Feng et al.   

[128] proposed a model based on Convolution 

Transformer (CT) with dual discriminator GAN 

(D2GAN) and developed a new self-attention module 

that is focused on spatio-temporal modeling in video 

sequences. The CT is capable of encoding temporal 

information efficiently in a sequence of feature maps and 

the D2GAN was developed to enhance the prediction of 

future frames using the Wasserstein GAN with gradient 

penalty (WGAN-GP) [129]. Li et al. [130] proposed 

another method using a Transformer-based Multi-

Sequence Learning (MSL) network to address the 

shortage in the other MIL-based methods. The extracted 

snippets features were encoded using a multilayer 

Convolution Transformer-Encoder.  Rather than 

selecting the instance with the highest score, the method 

selects the sequence with the highest sum of anomaly 

scores to reduce the probability of incorrect selection. 

VideoSwin [131] is used as a feature extractor in this 

method gives a better performance than C3D and I3D 

traditional extractors. 

    Chen et al. [132] introduced a Magnitude-

Contrastive Glance-and-Focus Network (MGFN) for 

anomaly detection to address the issue in  [59] as it 

pushes the magnitude of abnormal features to be larger 

and the normal ones to be smaller without considering 

other video attributes. Unlike previous methods, it first 

scans the entire video sequence for long-term context 

information, and then addresses each specific portion for 

anomaly detection. In addition, they developed the 

Feature Amplification Mechanism (FAM) to improve 

feature learning and a Magnitude Contrastive (MC) Loss 

to encourage the separability of normal and abnormal 

features. The model is composed of two blocks: Glance 

block and Focus block respectively. In the Glance block, 

a video clip-level transformer (VCT) is used for global 

correlation learning among clips followed by 2 fully 

connected Feed-Forward Networks (FFN). The Focus 

block includes a self-attentional convolution (SAC) to 

improve the learning of features, followed also by FFN. 

   All previous methods concentrated on extracting 

anomaly data representations without taking the effect of 

normal data into their consideration. Zhou et al. [133]  

introduced an Uncertainty Regulated Dual Memory 

Units (UR-DMU) model to learn both the representation 

of normal and abnormal data. They designed a Global 

and Local Multi-Head Self Attention (GL-MHSA) model 

for learning the features, afterwards two memory banks 

for normal and abnormal data are used to differentiate 

between the normal and abnormal patterns. The model 

ends with Normal data Uncertainty Learning (NUL) for 

normality latent embedding learning using Gaussian 

distribution. 

   In Table 2, recent papers on applying swarm 

optimization algorithms in VAD are proposed. Qasim et 

al. [134] used a modified ACO clustering algorithm to 

identify prominent regions in video frames with high 

optical flow variations for abnormal event detection in
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Table 1. Recent SOTA approaches applied in AbHAR with Area Under the Curve (AUC). The different colors in the table 

indicate different techniques with their results. 

Paper Year 
Feature-

extraction 
Method Loss function Datasets AUC (%) 

Code   

Sultani et al. 
[47] 

2018 C3D- RGB 

3 Fully 

Connected 

Layers 

MIL+ hinge loss 
function 

UCF- crime  75.41 

 

Code 

Zhong et al. 
[62]  

2019 
C3D 

TSN-RGB 

TSN-optical flow 

GCN 

Cross entropy + 

temporal- 
ensembling 

strategy [140]  

UCF-Crime 
 

81.08 

82.12 

78.08 

 

 

 
 

Code 

 
 

 

UCSD Ped2 

[141,142] 

93.2 ± 2.3 
(Greyscale) 

92.8 ± 1.6 

ShanghaiTech [143] 
76.44 
84.44 

84.13 

Zhang et al. 
 [63] 

2019 C3D-RGB TCN + 2 FCN Inner bag loss (IBL) UCF-Crime 78.66 
- 

Zhu et al. 
  [117] 

2019 
PWC-Net 

Optical flow 
Attention model MIL UCF-Crime 79.0 

 
- 

Morais et al. 
[56] 

2019 
Alpha Pose [57] + 

optical flow 

Recurrent 

encoder-decoder 

Perceptual loss + 
Global loss + Local 

loss 

ShanghaiTech 
 

73.4 
 

 
Code 

CUHK Avenue [144] 

 
86.3 

Degardin et al. 
[119] 

2020 C3D- RGB 

3 FC + 2 

Bayesian 

classifiers 

MIL + cross-
entropy 

UCF-Crime 

 

74.4 

 
 

 

Code 

UBI-Flight [119] 
81.9 

 

UCSD 80.9 

Lu et al. 
 [55] 

2020 RGB 
U-

Net+ConvLSTM 

+GAN 

Meta-Learning for 

different tasks 

ShanghaiTech 77.9  
Code 

CUHK Avenue 
85.8 

 

UCSD Ped1 86.3 

UCSD Ped2 96.2 

Doshi et al. 
 [121] 

2020 RGB GAN + YOLOv3 

Intensity+ gradient 

difference + optical 
flow + adversarial 

training 

CUHK Avenue 
86.4 

 
 

Code 

UCSD Ped 2 
97.2 

 

ShanghaiTech 70.9 

Wu et al. [123]  2020 

C3D-I3D  

+ (RGB 

optical flow) 

VGGis [145] 

Holistic Branch 

Network 

Binary Cross-

Entropy + 

Distillation loss 
within a MIL 

scheme 

XD-Violence [123]  
67.19 

78.64 

 

 

Code 

Kamoona et al.  
[60]  

2020 C3D-RGB 

Temporal 

encoding-
decoding 

network 

MIL + mean 

between normal and 
abnormal instances 

score 

ShanghaiTech 87.42 
 

 
Code 

UCF-Crime 79.49 

Ullah et al. 
[124] 

2021 
Pre-trained 

ResNet-50 
BD-LSTM Cross-entropy 

UCF-Crime 85.53 
 

- 
UCFCrime2Local 

[49] 
89.05 

Tian et al. [59] 2021 
C3D-RGB 

I3D-RGB 

Dilated 
convolutions + 

self-attention 

MIL 

ShanghaiTech 
91.51 

97.21 

 

 

Code 
XD-Violence 

75.89 

77.81 

UCF-Crime 

 

83.28 

84.03 

Yuan et al. [91] 2021 RGB 
Transformer 

+GAN 

Intensity + loss 
Gradient loss + 

Difference loss 

UCSD Ped1 86.7  
 

 

 
- 

UCSD Ped2 96.4 

Avenue 87.0 

UCSD Ped2 

93.2 ± 2.3 

(Greyscale) 

92.8 ± 1.6 

https://github.com/WaqasSultani/AnomalyDetectionCVPR2018
https://github.com/jx-zhong-for-academic-purpose/GCN-Anomaly-Detection/tree/master/pygcn
https://github.com/RomeroBarata/skeleton_based_anomaly_detection
https://github.com/DegardinBruno/human-self-learning-anomaly
https://github.com/yiweilu3/Few-shot-Scene-adaptive-Anomaly-Detection
https://github.com/kevaldoshi17/Prediction-based-Video-Anomaly-Detection-
https://github.com/Roc-Ng/XDVioDet
https://github.com/AmmarKamoona/Multiple-Instance-Based-Video-Anomaly-Detection-Using-Deep-Temporal-Encoding-Decoding
https://github.com/tianyu0207/RTFM
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ShanghaiTech 

76.44 

84.44 

84.13 

Feng et al. [128] 2021 Optical flow CT +D2GAN WGAN-GP 

ShanghaiTech 77.7  
- UCSD Ped2 97.2 

Avenue 85.9 

Li et al.  [130] 2022 
I3D 

VideoSwin 

Transformer + 

1D convolution 

MIL with sequences 

+ Binary Cross 

Entropy  

ShanghaiTech 
96.08 

97.32 

 

- 

UCF-Crime 
 

85.30 
85.62 

Chen et al. 

[132] 
2022 

I3D 

VideoSwin 
VCT+SAC+FNN 

MC + Binary Cross 

Entropy 

UCF-Crime 

 

86.98 

86.67 
 

Code 

XD-Violence 
79.19 
80.11 

Zhou et al. 

[133] 
2023 I3D 

GL-

MHSA+DMU 

4 Binary Cross 

Entropy 

UCF-Crime 

 
86.97 

Code 

XD-Violence 94.02 

 

 

Table 2. Recent Swarm Optimization methods applied in AbHAR with Area Under the Curve (AUC) or Accuracy (AC) 

  

Paper Year Method 

Swarm 

Optmization 

Algorithm 

Datasets 
AUC/AC 

(%) 

Qasim et al.[134] 2019 SVM ACO 

UMN [146] 
99.77 

(AUC) 

UCF web 
98.54 

(AUC) 

Priyadharsini et al [135] 2022 CNN+SVM PSO UCSD 
97 

(AC) 

Alsolai et al. [136] 2023 EfficientNet ICSO 

UCSDPed1 
87.87 

(AUC) 

UCSDPed2 
88.90 

(AUC) 

Kumar et al. [139] 2023 CNN PSO ADOC [147] 
86 

(AC) 

crowded environments in surveillance videos. 

Priyadharsini et al.  [135] built a hybrid  DL system 

based on a pre-trained CNN and a One-class SVM where 

improved PSO is used to isolate the most salient regions 

in the video frames. Alsolai et al.  [136] proposed a 

vision-based anomaly system based on the EfficientNet 

[137] with Improved Chicken Swarm Optimizer (ICSO) 

[138] to detect and classify anomalies to assist visually 

impaired people. Kumar et al. [139] Applied Multi-

Feature Tensor Subspace Learning and Robust Principal 

Component Analysis for feature extraction while PSO-

based CNN for anomaly detection. 

6 CONCLUSIONS 

      The Vision-Based AbHAR is considered a 

challenging task despite the recent advancements. The 

lack of a generic dataset that contains numerous different 

scenarios, a general framework that can adapt to multiple 

environments, and dedicated edge devices that can 

handle   

and scale with the intensive computations, is considered 

the main reasons behind its difficulties. Nevertheless, 

VAD is garnering a lot of attention because of its vital 

role in ensuring security and safety by detecting 

anomalous events like traffic accidents and crimes. This 

survey provides an in-depth look at the recently proposed 

models in terms of accuracy, datasets, and loss functions. 

One of the notable issues regarding AbHAR is the scarce 

number of frameworks that address real-time 

applications. Furthermore, novel datasets with varied 

forms of anomalies should be developed to cover all 

possible scenarios. In addition to that, the newly 

developed models should be able to adapt and generate 

new scenes to be robust enough if the dataset contains 

little to no anomalies  at all. Moreover, swarm 

optimization algorithms can be used with MIL methods 

to save time by reaching optimal solutions faster which 

is very crucial in VAD field. Finally, End-To-End 

pipeline optimization with quantization techniques may 

be a powerful approach to combine the feature extraction 

and classification phases in one cycle. Experimentally, 

this can reduce the training pipeline complexity and 

enable us to efficiently deploy massive models onto edge 

devices. 

 

 

https://github.com/carolchenyx/MGFN
https://github.com/henrryzh1/UR-DMU
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