
49 
 

                                                                                                                                                                              
 

Enhanced Hybrid Spider Monkey Optimization with Particle Swarm 
Optimization for Resource Management in Fog Computing Environment 

 
Radwa Attia1, *, Eman Saleh2, Heba Nashaat3 

1Electrical Engineering Department, Faculty of Engineering, Port Said University, Port Said, Egypt, email: radwa_yousef@eng.psu.edu.eg 
2Electrical Engineering Department, Faculty of Engineering, Port Said University, Port Said, Egypt, email: me.e9188@gmail.com 

3Electrical Engineering Department, Faculty of Engineering, Port Said University, Port Said, Egypt, email: hebanashaat@eng.psu.edu.eg, 
*Corresponding author, DOI: 10.21608/pserj.2025.352182.1389. 

   

 

 

Received 2025 -1-11   

Revised 2025-1 -24  

Accepted 2025-1 -28  

 

© 2025 by Author(s) and PSERJ.  

 

This is an open access article 
licensed under the terms of the 
Creative Commons Attribution 
International License (CC BY 
4.0). 
http://creativecommons.org/licen
ses/by/4.0/ 

 

 

ABSTRACT 
The rapid expansion of Internet of Things (IoT) applications has driven the widespread 

adoption of fog computing, which places computational resources closer to data sources. 
However, achieving efficient resource management in fog computing environments 
remains a significant challenge due to diverse resource constraints, dynamic workload 
variations, and stringent Quality of Service (QoS) requirements. This paper introduces a 
novel Enhanced Hybrid Spider Monkey Optimization (EH-SMO) algorithm with Particle 
Swarm Optimization (PSO) for task scheduling in fog computing, inspired by the social 
foraging behavior of spider monkeys and enhanced by PSO's efficient local search 
capabilities. The proposed EH-SMO algorithm dynamically allocates computational 
resources, balances workloads across fog nodes, and optimizes makespan, energy 
consumption, and resource utilization objectives through adaptive parameter control for 
energy efficient and low latency performance. Through comprehensive simulation 
experiments comparing EH-SMO with MCT-SMO and MPSO baseline schemes, the 
proposed algorithm achieves substantial improvements in scheduling efficiency, energy 
consumption, and resource allocation by achieving 32% and 17% reduction in makespan, 
reducing energy consumption by up to 33% and 45%, while improving resource utilization 
by 18% and 37%, respectively. EH-SMO exhibits robust adaptability to dynamic workload 
variations and demonstrates superior scalability across different fog computing scenarios, 
making it a promising solution for real-world IoT applications. 

Keywords: IoT, QoS, Optimization, Fog Computing, Resource Management. 

 

1 INTRODUCTION 

Internet of Things (IoT) is a network of interconnected 
devices, sensors, and systems that communicate and 
exchange data over the Internet [1]. The rapid growth of 
IoT devices has led to significant advances in various 
critical fields [2], as shown in Figure 1. However, these 
IoT devices have limited computing power, storage, and 
energy resources, making them unsuitable for complex 
data analysis [3]. The anticipated growth of IoT devices 
poses a major challenge in managing the massive 
amounts of generated data. This exponential growth not 
only intensifies existing challenges in resource 

management but also introduces complexities in 
maintaining Quality of Service (QoS) and energy 
consumption requirements [4]. Fog computing has 
emerged as an innovative decentralized approach that 
connects edge devices with cloud infrastructure [5]. 
Despite offering a lot of processing power, the cloud's 
centralization causes problems with latency, bandwidth, 
and network congestion [6-7]. Fog computing resolves 
these issues, optimizing resource usage and allowing 
real-time processing by bringing computing, storage, and 
analysis capabilities closer to the data sources [8]. 
Combining fog computing with IoT systems faces 
critical challenges in resource management and task 
scheduling [9-11], including efficient load balancing, 

 

PORT SAID ENGINEERING RESEARCH JOURNAL 

Faculty of Engineering - Port Said University  
Volume 29 No. 2 pp: 49:61 

 



 

50 
 

optimizing energy consumption, and achieving scalable 
performance across increasingly complex distributed 
computing environments.  

 
Figure 1: Sophisticated IoT communication paradigms 

These challenges demand innovative algorithmic 
approaches that can intelligently navigate the intricate 
computational landscape of interconnected devices and 
intermediate processing nodes. Traditional/Deterministic 
mechanisms [12] form the foundation, utilizing fixed 
rules and mathematically proven methods such as First 
Come First Serve (FCFS), round robin, and priority 
scheduling. They offer predictable outcomes and 
straightforward implementation however, their rigid 
nature limits effectiveness in dynamic scenarios. 
Learning-based mechanisms [13] are the latest 
advancement in scheduling innovation, leveraging 
artificial intelligence through reinforcement learning, 
deep learning, and neural networks to adapt to changing 
conditions and improve performance over time, 
particularly valuable in environments with growing 
workload patterns. Heuristic-based mechanisms [14] 
address complex scheduling requirements through 
problem-specific rules, with approaches like Min-Min, 
Max-Min, and earliest deadline first algorithms 
efficiently finding near-optimal solutions while 
balancing computational overhead for time-sensitive 
applications. Meta-heuristic mechanisms [15] introduce 
sophisticated optimization strategies inspired by natural 
phenomena, with algorithms like genetic algorithms, 
Particle Swarm Optimization (PSO), and ant colony 
optimization excelling in handling multiple objectives 
simultaneously, demonstrating particular effectiveness in 
scenarios requiring balance across multiple performance 
metrics. 

The optimization of task scheduling in fog computing 
presents a complex multi-objective challenge that 
demands sophisticated solution approaches. Given the 
inherent NP-hard nature of scheduling problems and the 
limitations of conventional methods, meta-heuristic 
algorithms emerge as particularly promising solutions. 

These approaches overcome the computational 
intractability faced by traditional deterministic methods 
and the local optima limitations of simple heuristics, 
while avoiding the extensive training data requirements 
of learning-based systems [16-17]. To advance this field, 
an Enhanced Hybrid Spider Monkey Optimization (EH-
SMO) algorithm with PSO is proposed to enhance the 
traditional Spider Monkey Optimization (SMO) through 
a hybrid architecture that combines global exploration 
through spider monkey social behavior with PSO-driven 
local search optimization. The theoretical foundations, 
system model, and problem formulation of EH-SMO are 
presented, setting the stage for a detailed exploration of 
methodology and performance evaluation. The main 
contributions of this paper are summarized as follows: 
A. The system model and optimization framework are 

developed with a focus on makespan, energy 
consumption, and cost metrics in fog computing 
environments. The EH-SMO algorithm is proposed 
to manage dynamic task scheduling by: 

● Integrating PSO's local search capabilities with 
SMO's swarm intelligence to enhance 
convergence speed and solution quality through a 
novel hybrid position update mechanism. 

● Developing an advanced selection operator that 
combines velocity-based search efficiency with 
distance-based resource matching for optimal 
task-fog node pairing. 

● Improving convergence speed and solution quality 
through innovative adaptive mechanisms. 

● Achieving efficient resource utilization through 
hierarchical group organization and adaptive 
parameter control mechanisms. 

● Optimizing overall system performance by 
balancing makespan, energy consumption, and 
cost objectives. 

B. Evaluating EH-SMO algorithm's convergence 
characteristics and analyzing parameter impacts on 
makespan, energy and utilization weighted 
optimization objectives to demonstrate algorithm's 
effectiveness in finding near-optimal scheduling 
solutions across diverse fog computing scenarios. 

The remainder of this paper is organized as follows: 
Section 2 presents the related works of various resource 
management and scheduling approaches. Section 3 
explains the system model and problem formulation for 
the proposed EH-SMO algorithm. Section 4 explains the 
design of the algorithm. Section 5 displays the evaluation 
methodology and simulation results. Finally, Section 6 
draws the conclusion. 

2 RELATED WORK 

Prior research in fog computing has produced diverse 
algorithmic solutions to address the inherent 
complexities of resource management and performance 
optimization. Several notable traditional scheduling 
approaches have been proposed.  



 

51 
 

The Matrix-based Task-Fog Pairing (MTFP), proposed 
in [18], introduces a dual-matrix architecture that utilizes 
compatibility and execution time matrices for task 
allocation. The compatibility matrix establishes viable 
task-node pairings, while the execution time matrix 
handles processing requirement calculations. This 
approach significantly improves processing delay and 
energy efficiency through systematic workflow 
prioritization based on deadlines and resource demands. 
However, it faces limitations in large-scale deployments 
due to continuous matrix maintenance overhead and 
shows reduced adaptability in dynamic scenarios due to 
static resource assumptions. A Resource Aware 
Prioritized Task Scheduling (RAPTS) algorithm is 
presented in [19]. It uses a minimum completion time 
algorithm to manage resource allocation and prioritizes 
tasks into three priority queues based on deadlines and 
virtual machine processing delays. This systematic 
prioritization mechanism optimizes response time, cost, 
makespan, and resource utilization. However, managing 
task dependencies and adjusting to dynamic workload 
variations present the biggest challenge, especially in 
intricate fog computing scenarios. 

Learning-based mechanisms leverage artificial 
intelligence and machine learning techniques to create 
adaptive scheduling solutions in fog environments. In 
[20], a Multi-Objective Fuzzy Approach (MOFA) is 
introduced, a sophisticated distributed computing 
algorithm utilizing a multi-agent system with 
contractual, fog, and cloud agents, enhanced by a fuzzy 
inference system that intelligently combines genetic 
algorithms for optimization and fuzzy logic for 
scheduling evaluation. By dynamically partitioning 
workflows based on computational intensity and latency 
sensitivity, the method offers a nuanced strategy for 
resource allocation across different computational layers. 
Despite its innovative design, the approach confronts 
significant challenges in agent coordination and rule-
base maintenance, potentially limiting its scalability and 
effectiveness in highly dynamic computing 
environments. Region Aware Dynamic Scheduling 
(RADISH) is introduced in [21] to integrate a bi-class 
neural network for task classification, MOFA algorithm 
for QoS-aware scheduling, and soft Actor-Critic 
algorithm machine learning techniques for load 
balancing. The model successfully employs virtual 
machine monitoring with potential field clustering and 
three-tiered repositories for task distribution. However, it 
faces challenges in maintaining multiple repositories and 
coordinating various learning components, particularly in 
resource-constrained environments requiring rapid 
adaptation. In [22], the Fuzzy-GEC algorithm merges 
fuzzy logic and genetic algorithms to create an intelligent 
task allocation method that simultaneously optimizes 
computational efficiency and energy consumption. The 
approach seeks to intelligently distribute computational 
workloads by employing evolutionary techniques and 
fuzzy-based encoding. However, the method grapples 

with technical complexities, including substantial 
computational demands and the intricate challenge of 
balancing multiple algorithmic components to achieve 
peak performance. Optimized Task Scheduling and 
Preemption (OSCAR) is introduced in [23] to implement 
a four-phase solution combining expectation-
maximization clustering, modified heap-based optimizer, 
categorical deep Q network, and dynamic preemption 
strategy. While this comprehensive approach 
successfully enhances QoS in fog-assisted IoT 
environments, it faces significant challenges in 
coordinating multiple mechanisms and adapting to rapid 
workload changes. 

Heuristic-based scheduling mechanisms employ 
practical rules to achieve near-optimal solutions for fog 
computing environments. The deadline-aware task 
scheduling challenge in fog computing is addressed in 
[24] through a Fuzzy Priority-aware Semi-Greedy 
(FuzzyPSG) algorithm by incorporating fuzzy logic to 
handle the inherent uncertainty in fog environments 
while optimizing deadline satisfaction and energy 
consumption. However, it faces challenges in managing 
task dependencies, concurrent execution scenarios, and 
computational overhead from the multistate procedure, 
particularly affecting real-time scheduling performance. 
In [25], the Task-Resource Adaptive Pairing (TRAP) 
algorithm introduces a sophisticated task-resource 
allocation approach featuring a three-component 
architecture designed to optimize computational resource 
management. By incorporating a batch system for task 
categorization, a dynamic ranking mechanism based on 
processing and network metrics, and a priority method 
considering multiple task attributes, the algorithm aims 
to enhance load balancing and reduce search space 
complexity. However, the method encounters significant 
challenges, particularly in generating accurate initial 
priority assignments and maintaining scalability in 
rapidly evolving computational environments that 
demand frequent batch system reconfiguration. Data-
Locality Aware Job Scheduling in Fog-Cloud (DLJSF) 
algorithm is introduced in [26]. It employs a three-layer 
architecture and formulates scheduling as an integer 
linear programming optimization model. It prioritizes 
local task execution while enabling strategic data 
migration, effectively minimizing makespan through 
data locality awareness. However, it encounters 
significant challenges in environments with dynamic 
data generation patterns and requires careful 
management of data replication strategies, particularly in 
resource-constrained fog nodes. 

Meta-heuristic approaches provide sophisticated 
nature-inspired optimization strategies for complex 
scheduling problems in fog computing. A heuristic 
initialization-based Spider Monkey Optimization (MCT-
SMO) algorithm is proposed in [27]. It enhances the 
traditional SMO algorithm by incorporating MCT 
heuristic initialization for the initial population, 
explicitly targeting cost optimization through the 



 

52 
 

combined consideration of service time and monetary 
expenses. 

While demonstrating superior performance compared 
to other initialization methods and PSO, particularly in 
average cost and service time metrics, the algorithm 
faces limitations in addressing load balancing and fault 
tolerance aspects. This work further validates the 
potential of enhancing meta-heuristic approaches with 
heuristic initialization strategies, though it highlights the 
need for more comprehensive solutions in large-scale fog 
computing environments. In [28], Latency-Aware Multi-
objective Multi-Rank (LAMOM) incorporates 
makespan, energy consumption, cost, reliability, and 
workload balance optimization objectives. It employs 
edge-merge and comp-matching task clustering schemes 
within a three-tier fog architecture, utilizing multiple 
task-ranking schemes and parallel sub-schedules. It faces 
challenges in computational complexity for large task 
sets and performance consistency across diverse 
workload patterns. In [29], a Modified Particle Swarm 
Optimization (MPSO) algorithm is proposed. It presents 
a dual-phase optimization for application module 
placement and task allocation using population-based 
iterative refinement. It demonstrates notable 
improvements over traditional FCFS and basic PSO 
approaches regarding resource utilization and system 
performance. However, it encounters inherent challenges 
in computational complexity and parameter tuning 
optimization. Chaotic Opposition-based Differential 
Evolution Algorithm (CODA) [29] combines chaotic 
maps and opposition-based learning to create a hybrid 
optimization strategy. It can effectively prevent 
premature convergence and avoid local optima while 
simultaneously optimizing makespan, energy 
consumption, and cost. However, it struggles to balance 
the exploration and exploitation phases. It requires 
careful parameter tuning for optimal performance in 
different fog computing scenarios. 

These scheduling approaches highlight the remarkable 
potential of meta-heuristic and nature-inspired 
algorithms in addressing multi-objective optimization 
challenges in fog computing environments. Although 
these algorithms have made significant contributions in 
optimizing makespan, energy consumption, and cost, 
there remains a need for a comprehensive solution that 
effectively balances exploration and exploitation while 
maintaining computational efficiency. This is where the 
Enhanced Hybrid Spider Monkey Optimization (EH-
SMO) algorithm comes in, offering a novel perspective 
on task scheduling optimization in fog computing 
through enhanced search strategies and adaptive 
parameter control. 

EH-SMO utilizes enhanced spider monkey foraging 
behavior to provide a flexible and adaptive solution to 
the task scheduling challenge in fog computing 
environments. Unlike many previous approaches, EH-
SMO incorporates both PSO-based local search 
capabilities and adaptive parameter control in its 

optimization process, allowing it to better balance 
exploration and utilization in dynamic fog computing 
scenarios. The key components of existing scheduling 
mechanisms are identified and compared in Table 1 
regarding their scheduling type, optimization objectives, 
and evaluation environments, establishing the foundation 
for EH-SMO solution. 

3 SYSTEM MODEL AND PROBLEM 
FORMULATION 

The primary objective of EH-SMO algorithm is to 
optimize task scheduling decisions in fog computing 
environments by determining optimal task-to-fog node 
mappings while minimizing energy consumption, 
makespan, and cost. EH-SMO hybrid model combines 
Spider Monkey Optimization with Particle Swarm 
Optimization, followed by a multi-objective problem 
formulation. The system model incorporates a three-layer 
architecture with mathematical expressions for time 
components, energy consumption, and cost factors. 

3.1 System Model 

The fog computing environment consists of three main 
layers, as shown in Figure 2. IoT devices create tasks, and 
the fog processes them and the cloud layer. Each fog node 
can be represented as 𝐹 =  {𝑋, 𝑃௢} where 𝑋 =
 {𝑥ଵ, 𝑥ଶ, … , 𝑥௡} represents the n number of fog nodes, Po 
represents processing power in Million Instructions Per 
Second (MIPS). The tasks generated by IoT devices are 
represented as 𝑇 =  ൛𝜏, 𝑆, 𝑇௟௘௡௚௧ ൟ, where 𝜏 =

 {𝜏ଵ, 𝜏ଶ, … , 𝜏௠} represents m number of tasks, S is the size 
of tasks, and Tlength represents task length. Various 
notations of EH-SMO algorithm are shown in Table 2. 

3.2 Transmission Time 

Transmission time, execution time, and result delivery 
time are the three primary components that make up each 
task's completion time when it is assigned to fog nodes. 
For each task assigned to the fog node, the three-time 
components are calculated by (1) to (3); respectively. 

𝑇௨௣ =
𝑆

𝑑௧௨

 (1) 

𝑇௘௫௘ =
𝑇௟௘௡௚௧௛

𝑃𝑜
 (2) 

𝑇ௗ௢௪௡ =  
𝑅௦

𝑑௧ௗ

 (3) 

Where 𝑑௧௨ is the uplink data rate, 𝑅௦ represents result 
size and 𝑑௧௙ is the downlink data rate. 

The makespan Ŧ represents the maximum completion 
time across all tasks as follows: 

𝑇௧௢௧௔௟(௜,௝) =  𝑇௨௣(௜,௝) +  𝑇௘௫௘(௜,௝) +  𝑇ௗ௢௪௡(௜,௝) (4) 

Ŧ = max൫𝑇௧௢௧௔௟(௜,௝)൯ , 𝜏௜ ∈ 𝑇, 𝑓௝ ∈ 𝐹       (5) 



 

53 
 

Table 1. Comparative analysis of different task offloading algorithms 

Approach Task Scheduling Mechanism Environment 
Primary Objectives 

Latency Makespan Cost QoS Utilization 

MTFP [18] 
Traditional 

/Deterministic 
Matrix-based Fog √ × √ √ × 

RAPTS [19] 
Traditional 

/Deterministic 
Priority queuing Fog × × × √ √ 

MOFA [20] Learning-Based Clustering Fog-Cloud √ × √ √ √ 

RADISH [21] Learning-Based 
Bayesian 

optimization 
Cloud √ √ × √ × 

Fuzzy-GEC [22] 
Hybrid 

(Learning& 
Meta- Heuristic) 

Fuzzy logic, 
Genetic 

Cloud × × × √ √ 

OSCAR [23] Learning-Based Machine learning Cloud √ × √ √ √ 

FuzzyPSG [24] Heuristic 
Fuzzy logic, 

Priority-aware 
Fog √ × √ × × 

TRAP [25] Heuristic 
Batch processing, 
Priority ranking 

Fog √ × √ × × 

DLJSF [26] Heuristic 
Data locality- 

aware 
Fog-Cloud × √ √ × × 

MCT-SMO [27] Meta- Heuristic 
Spider monkey 

optimization 
Fog √ × √ × × 

LAMOM [28] Meta- Heuristic 
Multi-objective 

ranking 
Fog √ √ × √ × 

MPSO [29] Meta- Heuristic Modified PSO Fog √ × × √ √ 

CODA [30] Meta- Heuristic 
Chaotic 

opposition-based 
Fog × √ √ √ × 

EH-SMO 
(Proposed) Meta- Heuristic SMO & PSO Fog-Cloud √ √ √ √ √ 

3.3 Energy Consumption  

The energy requirements of the system are broken 
down into three key components. Energy spent during 
task upload is derived from (6), while the processing 
energy needed at the fog node is calculated using (7). 
Finally, (8) determines energy for downloading results. 

 
𝐸௨௣ =  𝑇௨௣ ×  𝑃௧௥௔௡௦ (6) 

𝐸௘௫௘ =  𝑇௘௫௘ × 𝑃௖௣௨ 
 

(7) 

𝐸ௗ௢௪௡ =  𝑇ௗ௢௪௡ ×  𝑃௥௘௖௜௩௘  (8) 

Where 𝑃௧௥௔௡௦ is transmission power consumption. 𝑃௖௣௨ is 
the power consumed by CPU during execution, 𝑃௥௘௖௜௩௘  is 
power consumed during result delivery. 

3.4 Total Cost  

The total cost at fog nodes comprises execution and 
transmission costs, calculated by (9) and (10) 
respectively. 

𝐶௘௫௘ =  𝑇௘௫௘ ×  𝐶௙  (9) 

𝐶௧௥௔௡௦ =  𝑇௨௣ × 𝐶௧ (10) 

Where 𝐶௙ represents cost usage and  𝐶௧ represents the 
transmission cost per unit time for the fog node. 

3.5 Problem Formulation 

Let 𝑇 =  {𝜏ଵ, 𝜏ଶ, … , 𝜏௠} represent the set of tasks to be 
processed by fog nodes 𝐹 =  {𝑓ଵ, 𝑓ଶ, … , 𝑓௡}. The 
objective is to find optimal task-to-node mapping that 
minimizes: makespan, energy consumption and cost 
constraints. 

𝐸௧௢௧௔௟ =  𝐸௨௣ +  𝐸௘௫௘ +  𝐸ௗ௢௪௡ (11) 

𝐶௧௢௧௔௟ =  𝐶௘௫௘ +  𝐶௧௥௔௡௦ (12) 

The multi-objective optimization problem is 
formulated as: 

min Ɯ =  Ŧ +  𝐸௧௢௧௔௟ +  𝐶௧௢௧௔௟   (13) 

𝐹(𝑛) =
1

Ɯ
 

(14) 
 

 



 

54 
 

Table 2.  Notations used in EH-SMO algorithm 

Symbol Definition 

F Set of fog nodes 
𝑃௢ Processing power of fog node 
𝑇 Set of tasks 
𝑆 Task size (MB) 

𝑇௟௘௡௚௧௛ Task processing Length (MI) 
Ŧ Makespan (Maximum completion time) 

𝑇௧௢௧௔௟ Total completion time 
𝐶௙ Cost per unit time for fog node  
𝐶௧ Transmission cost per unit time 

𝑆𝑀௜  Spider monkey i position vector 
𝑉௜ Velocity vector 

c1, c2 Local acceleration coefficients 
c3,c4 Global acceleration coefficients 

𝑃௕௘௦௧೔
 Personal best position 

𝑔௕௘௦௧೔
 Global best position 

𝐹𝑖𝑡௕௘௦௧೔,ೕ
 Selection fitness for task i and fog node j 

𝑑௜,௝  Normalized distance between task i and fog node j 
𝑉௜,௝ Normalized velocity component 

𝛼, 𝛽, 𝛾 Weight factors for selection fitness 

4 EH-SMO ALGORITHM 

Resource management in IoT is a challenging 
generalized problem that requires meta-heuristic 
algorithms. This paper proposes an Enhanced Hybrid 
Spider Monkey Optimization (EH-SMO) algorithm for 
task scheduling in the fog computing environment. The 
algorithm enhances traditional SMO by integrating the 
PSO local search mechanism and modifying the standard 
position update equations. The algorithm employs a 
hierarchical structure where SMO represents potential 
task-to-node mappings. Each SM's position is evaluated 
based on the weighted cost function Ɯ which considers 
time, energy and cost metrics. In addition, the algorithm 
introduces a PSO velocity component to enhance local 
search capability during position updates. The EH-
SMO’s flow chart is shown in Figure 3. 

For population structure, as illustrated in Algorithm 1, 
each 𝑆𝑀௜ is defined as a position vector {𝑥௜ଵ, 𝑥௜ଶ, … , 𝑥௜௡} 
where 𝑥௜௝  represents the fog node assigned to task  𝜏௝, 
and a velocity vector 𝑉௜ =  {𝑣௜ଵ , 𝑣௜ଶ, … , 𝑣௜௡} for PSO-
based movement. The population is organized into 𝑘 
groups 𝐺 =  {𝑔ଵ, 𝑔ଶ, … , 𝑔௞}, where each group maintains 
a Local Leader (𝐿𝐿) representing the best solution within 
the group and tracks improvement through a Local 
Leader Count (𝐿𝐿𝐶) bounded by Local Leader Limit 
(𝐿𝐿𝐿). At the global level, the best solution among all 
groups is maintained as the Global Leader (𝐺𝐿), with 
updates monitored through Global Leader Count (𝐺𝐿𝐶) 
and limited by Global Leader Limit (𝐺𝐿𝐿). This 
hierarchical organization facilitates both local 
exploitation through group-based search and global 
exploration through leader-guided movement, while 
maintaining adaptation through leader update 
mechanisms. 

4.1  Position Update Rules 

The position updates in EH-SMO combine SMO's 
swarm intelligence with PSO's velocity mechanism 
through two main phases. In the Local Leader Phase, 
each SM updates its velocity and position considering 
both local group information and personal experience as 
following: 

𝑉௜(௧ାଵ) =  𝑤 × 𝑉௜(௧) +  𝑐ଵ𝑟ଵ൫𝐿𝐿𝑘 – 𝑋௜(௧)൯

+  𝑐ଶ𝑟ଶ ൫𝑝௕௘௦௧೔
– 𝑋௜(௧)൯ 

(15) 

𝑋௜(௧ାଵ) =  𝑋௜(௧) +  𝑉௜(௧ାଵ) (16) 

Where 𝑤 is inertia weight, 𝑐ଵ, 𝑐ଶ are acceleration 
coefficients, 𝑟ଵ,  𝑟ଶ are random numbers in [0,1], 𝐿𝐿𝑘 
represents the local leader position of group 𝑘, and pbesti 
is the personal best position.  

In the Global Leader Phase, the position update 
incorporates global best information as in (17). 

This dual-phase update mechanism ensures both local 
exploitation through group-based movement and global 
exploration through leader-guided search. 

𝑉௜(௧ାଵ) =  𝑤 × 𝑉௜(௧) +  𝑐ଷ𝑟ଷ൫𝐺𝐿 – 𝑋௜(௧)൯

+  𝑐ସ𝑟ସ ൫𝑔௕௘௦௧೔
– 𝑋௜(௧)൯ 

(17) 

𝑋௜(௧ାଵ) =  𝑋௜(௧) +  𝑉௜(௧ାଵ) (18) 

Where 𝐺𝐿 represents global leader position, 𝑔௕௘௦௧೔
 is 

global best position, 𝑐ଷ, 𝑐ସ are acceleration coefficients, 
and 𝑟ଷ, 𝑟ସ are random numbers in [0,1].  

4.2 Selection Operator 

The selection operator in EH-SMO identifies optimal 
task-fog node pairs by incorporating both PSO velocity 
and distance metrics. For a task 𝜏௜ and fog node 𝑓௝, the 
selection fitness is calculated based on a new hybrid 
measure that combines velocity-based search efficiency 
with distance-based resource matching: 

𝑓𝑖𝑡௕௘௦௧೔,ೕ
=

𝛼

𝑑(௜,௝)
+  𝛽 × 𝐹(𝑛) +  𝛾 × 𝑉(௜,௝) (19) 

Where 𝑑௜,௝ is the normalized distance between task ti and 
fog node 𝑓௝, 𝐹௡ is the fitness value from equation (14),𝑉௜,௝ 
is the normalized velocity component from PSO, 𝛼, 𝛽, 
and 𝛾 are weight factors (𝛼 +  𝛽 +  𝛾 =  1). 

4.3 Learning Phases 

The EH-SMO algorithm implements a dual learning 
mechanism through Local Leader Learning Phase and 
Global Leader Learning Phase. In Local Leader 
Learning, if 𝐹௅௅೙೐ೢ

 > 𝐹௅௅೎ೠೝೝ೐೙೟
, the Local Leader 

position is updated; otherwise, 𝐿𝐿𝐶 is incremented and 
exceeding 𝐿𝐿𝐿 triggers group reorganization.  

Similarly, in Global Leader Learning, if 𝐹 ௅೙೐ೢ
 > 

𝐹 ௅೎ೠೝೝ೐೙೟
, the Global Leader position is updated; 

otherwise, 𝐺𝐿𝐶 is incremented and exceeding 
𝐺𝐿𝐿 initiates group redistribution based on the Maximum 
number of Groups (𝑀𝐺), thus maintaining balanced 
exploration and exploitation. 



 

55 
 

 

Figure 2: System model of the proposed EH-SMO algorithm 

5 SIMULATION RESULTS 

5.1 Simulation Setup and Parameters 

The proposed EH-SMO algorithm is implemented using 
iFogSim simulator environment [31]. In default settings, 
task loads vary from 250 to 2000 in a fog computing 
environment. The simulation experiments are performed 
on a Windows 11 computer with an Intel i7 CPU 3.2 
GHz and 16GB RAM. Table 3 provides a detailed list of 
the simulation parameters. The experiments analyze 
performance in terms of makespan, energy consumption, 
resource utilization, and convergence metrics. The EH-
SMO compared with two baseline algorithms: 

i. MCT-SMO [27]: A heuristic initialization-based 
SMO algorithm that enhances traditional SMO 
through minimum completion time heuristic 
initialization, specifically targeting cost and service 
time optimization in fog computing environments. 

ii. MPSO [29]: Modified PSO algorithm employing a 
dual-phase optimization for module placement and 
task allocation, optimizing latency and energy 
consumption through sophisticated particle update 
mechanisms. 

Table 3. Simulation parameters 
Parameter Value 

  Number of fog nodes 40-120 

 Task data size 0.1-5 MB 

  Task length 100-1000 Megacycles 

Communication bandwidth 100 Mbps 

 Simulation area 5km x 5km urban  

Simulation time 1000 sec 

5.2 Results and Analysis 

5.2.1 Average Makespan 
The makespan results, calculated by (5),  demonstrate 

EH-SMO’s effectiveness in minimizing task completion 
times through its hybrid optimization approach. Figure 4 
illustrates the average makespan for various 
computational tasks across the three algorithms. In 
Figure 4(a), with 40 fog nodes, EH-SMO achieves 17% 
lower average makespan than MPSO and 32% over 
MCT-SMO. The superior performance of EH-SMO can 
be attributed to its hybrid architecture that combines 
global exploration through spider monkey behavior with 
PSO's efficient local search capabilities. 

In Figure 4(b), with 80 fog nodes, EH-SMO's 
intelligent position update mechanism enables it to 



 

56 
 

efficiently navigate the larger solution space, resulting in 
an average makespan of 22% and 37% lower than MPSO 
and MCT-SMO, respectively. In Figure 4(c), with 120 
fog nodes, the gap widens especially agains the MCT-
SMO by about 50% due to it’s initialization overhead. 
This demonstrates EH-SMO's ability to maintain 

efficiency through superior load distribution and 
adaptive parameter control even at high node counts. The 
consistent performance of EH-SMO highlights how its 
hybrid optimization approach effectively manages 
complex search spaces while baseline algorithms show 
significant degradation at scale. 

 

Figure 3: EH-SMO’s flow chart 

Algorithm 1: EH-SMO algorithm 

Input: Tasks T={t1, t2, ..., tn}, Fog nodes F={f1, f2, ..., fm} 
Output: Optimal task scheduling solution 
1: Initialize population of SMs with random pos. & vel. 
2: Calculate initial fitness using (14) 
3: Select initial LL and GL 
4: Initialize LLC, GLC, LLL, GLL 
5: while (iteration < MaxIter) do 
6:    for each group k do 
7:        for each SMi in group k do 
8:             Calculate new velocity using (16) 
9:             Update position using (17) 
10:           Calculate new fitness F(n) 
11:           Update personal best if improved 
12:       end for 
13:       for each SMi in population do 
14:           Calculate selection fitness using (15) 
15:           Calculate new velocity using (18) 
16:           Update position using (19) 
17:           Update personal, global best if improved 
18:       end for 
19:       if F(LLnew) > F(LLcurrent) then 
20:           Update Local Leader 
21:       else 
22:           LLC++ 
23:       end if 
24:       if F(GLnew) > F(GLcurrent) then 
25:           Update Global Leader 
26:       else 
27:           GLC++ 
28:       end if 
29:       if LLC > LLL then 
30:           for each SMi in group k do  
31:              P = r1(GL - SMi) + r2(SMi - LLk)  
32:              Update position if improved  
33:           end for  
34:            LLC = 0 
35:       end if 
36:       if GLC > GLL then 
37:           if number_of_groups < MG then  
38:             Divide largest group into two  
39:             Select new LL for each group  
40:           else  
41:             Combine two closest groups  
42:     Select best LL  
43:  end if  
44:         GLC = 0  
45:         LLC = 0  
46:       end if 
47:   end for 
48: end while 
49: return best solution found 
 



 

57 
 

5.2.2 Energy Consumption 
Energy consumption evaluation, calculated by (11), 

reveals distinct patterns in resource allocation efficiency. 
In Figure 5(a), with 40 fog nodes, algorithms 
demonstrate linear growth due to sufficient resource 
availability. EH-SMO achieves through efficient 
resource management, an average energy consumption of 
32% and 46% lower than MCT-SMO and MPSO, 
respectively. In Figure 5(b), the 80 fog nodes scenario 
reveals emerging system stress patterns. EH-SMO 
achieves exceptional efficiency through its adaptive 
parameter control, maintains controlled energy 
consumption. MCT-SMO shows moderate performance 
degradation averaging 37% higher as its initialization-
based approach struggles to optimize larger task sets. 
While MPSO demonstrates significant efficiency loss 
averaging 53% higher as its local search limitations 
compound with increased problem complexity. In Figure 
5(c), with 120 fog nodes, dramatic exponential patterns 
emerge, highlights the algorithms' scalability 
characteristics under higher system stress. EH-SMO 
maintains remarkable efficiency through its hybrid 
optimization approach, with relatively controlled growth. 
MCT-SMO exhibits severe exponential increase, 
revealing fundamental limitations in its initialization 
strategy at scale, while MPSO exhibits the worst 
scalability, demonstrating how its local search 
limitations become more catastrophic in 
complex scenarios. The stark differences in curve 
patterns highlight EH-SMO superior ability to maintain 
controlled energy consumption even as system 
complexity increases significantly. 

5.2.3 Resource Utilization 
Resource Utilization (RU), represets the ratio of used 

resources to total available resources during the 
makespan. It is calculated by (20). 

𝑅𝑈 = ቌ
∑ ቀ𝑇௟௘௡௚௧௛೔

𝑃௢ೕ
ൗ ቁ௜∈்

∑ ቀ𝑃௢೑
∙ Ŧቁ௙∈ி

ቍ × 100 (20) 

Figure 6 reveals critical differences in resource 
management capabilities across algorithms.  

In Figure 6(a), with 40 fog nodes, EH-SMO maintains 
peak utilization through its effective resource allocation 
strategy and dynamic workload balancing. Its hybrid 
architecture enables 17.0% better utilization than MPSO 
and 37.9% over MCT-SMO.With 80 fog nodes in Figure 
6(b), exponential patterns emerge. EH-SMO maintains 
robust scaling via adaptive parameter control and 
efficient search space exploration. MPSO suffers from 
premature convergence in the enlarged solution space, 
leading to resource underutilization about 24.8% lower. 
MCT-SMO's performance deteriorates due to increased 
initialization overhead and lack of dynamic load 
balancing. Figure 6(c), showing 120 fog nodes, clearly 
demonstrates stepwise behavior. EH-SMO scales 
effectively through its sophisticated task distribution 
mechanism, significantly outperforming both MPSO and 
MCT-SMO by about 28.8% and 45.7%, respectively. 
These issues highlight inefficiencies in MPSO's reliance 
on localized search strategies and MCT-SMO's static 
initialization, which result in suboptimal resource 
utilization. In contrast, EH-SMO leverages a hybrid 
approach that dynamically adjusts task allocation based 
on real-time resource availability and workload patterns, 
enabling it to maintain robust performance under 
demanding conditions. These patterns quantitatively 
demonstrate how baseline limitations become more 
pronounced at scale, while EH-SMO's hybrid approach 
enables sustained performance. 

5.2.4 Adaptive Resilience 
A comparative analysis of three algorithms is 

evaluated under light, medium and high workload 
conditions to highlight the adaptability of EH-SMO in 
handling dynamic fog computing environments. As 
shown in Table 2, EH-SMO can dynamically adapts to 
fog computing environments by continuously monitoring 
network parameters and workload variations. The results 
demonstrate that EH-SMO significantly outperforms 
MCT-SMO and MPSO in terms of makespan, energy 
consumption, and resource utilization across all 
workload scenarios. 

Table 4. Consolidated Performance Metrics by Load Type 

Metric &Load type EH-SMO MCT-SMO MPSO 
Over 

 MCT-SMO 
Over MPSO 

Makespan (ms) 

Light 78.3 122.5 95.0 36.1% 17.6% 

Medium 120.0 203.3 155.0 41.0% 22.6% 

Heavy 149.2 253.3 193.7 41.1% 23.0% 

Energy (KJ) 

Light 178.3 198.2 211.7 10.0% 15.8% 

Medium 228.0 277.0 347.3 17.7% 34.4% 

Heavy 303.7 416.2 553.2 27.0% 45.1% 

Resource Utilization 
(%) 

Light 97.9 58.4 76.1 40.3% 22.3% 

Medium 92.2 52.7 70.8 42.8% 23.2% 

Heavy 86.5 46.7 65.7 46.0% 24.0% 



 

58 
 

 

    

(a) Under 40 fog nodes                                                        (b) Under 80 fog nodes 
 

 

          (c) Under 120 fog nodes 

Figure 4: Average task makespan under a varied number of tasks 

 

 (a) Under 40 fog nodes                                                 (b) Under 80 fog nodes 

 

         (c) Under 120 fog nodes 

Figure 5: Energy consumption under a varied number of tasks 



 

59 
 

 

 

  (a) Under 40 fog nodes                                                 (b) Under 80 fog nodes 

 

         (c) Under 120 fog nodes 

Figure 6: Resource utilization under a varied number of tasks

6 CONCLUSION 

This paper has presented EH-SMO, a novel hybrid 
optimization algorithm for task scheduling in fog 
computing environments that integrates Spider Monkey 
Optimization with Particle Swarm Optimization through 
an innovative dual-phase learning architecture. 
Simulation results confirm EH-SMO's superior 
performance, reducing makespan by up to 17% and 32% 
and improving resource utilization by about 18% and 
37%, maintaining the best efficiency even under heavy 
computational loads compared to MPSO and MCT-
SMO, respectively. Also, EH-SMO demonstrates 
remarkable 45% and 33% lower energy efficiency 
compared to baseline algorithms, keeping consumption 
controlled even as system complexity increases 
significantly. These substantial improvements, 
particularly in high-density scenarios and complex task 
distributions, validate the effectiveness of EH-SMO 
hybrid approach in addressing the fundamental 
challenges of fog computing resource management. 
Future research directions could explore real-time 
parameter adaptation mechanisms, multi-objective 
optimization under uncertainty, and integration with 
emerging IoT architectures to further advance fog 
computing capabilities. 

 

 

7 REFERENCES 

[1] R. O. Aburukba, M. AliKarrar, T. Landolsi, K. 
El-Fakih, "Scheduling Internet of Things 
requests to minimize latency in hybrid fog-
cloud computing," Future Generation Computer 
Systems, vol. 111, pp. 539-551, 2020. 

[2] R. Rani, N. Kumar, M. Khurana, A. Kumar, A. 
Barnawi, "Storage as a service in fog 
computing: a systematic review," Journal of 
Systems Architecture, vol. 116, pp. 102033, 
2021. 

 [3] P. Datta, B. Sharma, "A survey on IoT 
architectures, protocols, security and smart city 
based applications," Proc. of the 8th 
International Conference on Computing, 
Communication and Networking Technologies 
(ICCCNT), pp. 1-5, 2017. 

[4] Y. L. Jiang, Y. S. Chen, S. W. Yang, C. H. Wu, 
"Energy-efficient task offloading for time-
sensitive applications in fog computing," IEEE 
Systems Journal, vol. 13, no. 3, pp. 2930-2941, 
2019. 

[5] M. De Donno, K. Tange, N. Dragoni, 
"Foundations and evolution of modern 
computing paradigms: Cloud, IoT, edge, and 



 

60 
 

fog," IEEE Access, vol. 7, pp. 150936-150948, 
2019. 

[6] M. Kaur, R. Aron, "An energy-efficient load 
balancing approach for scientific workflows in 
fog computing," Wireless Personal 
Communications, vol. x, pp. 1-25, 2022. 

[7] K. Ostrowski, K. Małecki, P. Dziurzański, and 
A.K. Singh, “Mobility-aware fog computing in 
dynamic networks with mobile nodes: A 
survey,” Journal of Network and Computer 
Applications, p.103724, 2023. 

[8] R. O. Aburukba, M. AliKarrar, T. Landolsi, K. 
El-Fakih, "Scheduling Internet of Things 
requests to minimize latency in hybrid fog-
cloud computing," Future Generation Computer 
Systems, vol. 111, pp. 539-551, 2020. 

[9] H. Wadhwa, R. Aron, "TRAM: technique for 
resource allocation and management in fog 
computing environment," Journal of 
Supercomputing, vol. 78, no. 1, pp. 667-690, 
2022. 

[10] H. Nashaat, W. Hashem, R. Rizk, R. Attia, 
"DRL-Based Distributed Task Offloading 
Framework in Edge-Cloud Environment," IEEE 
Access, vol. 12, pp. 33580 - 33594, Mar. 2024. 

[11] M. M. S. Maswood, M. R. Rahman, A. G. 
Alharbi, D. Medhi, "A novel strategy to achieve 
bandwidth cost reduction and load balancing in 
a cooperative three-layer fog-cloud computing 
environment," IEEE Access, vol. 8, pp. 113737-
113750, 2020. 

[12] E. Hosseini, M. Nickray, S. Ghanbari, 
"Optimized task scheduling for cost-latency 
trade-off in mobile fog computing using fuzzy 
analytical hierarchy process," Computer 
Networks, vol. 206, pp. 108752, 2022. 

[13] J. Baek, G. Kaddoum, "Online partial 
offloading and task scheduling in SDN-fog 
networks with deep recurrent reinforcement 
learning," IEEE Internet of Things Journal, vol. 
9, pp. 11578-11589, 2022. 

[14] H. Wadhwa, R. Aron, "Optimized task 
scheduling and preemption for distributed 
resource management in fog assisted IoT 
environment," Journal of Supercomputing, 
2022. 

[15] M. Yang, H. Ma, S. Wei, Y. Zeng, Y. Chen, Y. 
Hu, "A multi-objective task scheduling method 
for fog computing in cyber-physical-social 
services," IEEE Access, vol. 8, pp. 65085-
65095, 2020. 

[16] Z. Movahedi, B. Defude, and A. M. 
Hosseininia, "An efficient population based 
multi-objective task scheduling approach in fog 
computing systems," J. Cloud Comput., vol. 10, 
no. 1, pp. 1–31, Dec. 2021. 

[17] P. Hosseinioun, M. Kheirabadi, S. R. K. 
Tabbakh, R. Ghaemi, "Task scheduling 

approaches in fog computing: A survey," 
Transactions on Emerging Telecommunications 
Technologies, vol. 33, no. 3, 2022. 

[18] N. Kaur, A. Mittal, "MTFP: matrix-based task-
fog pairing method for task scheduling in fog 
computing," International Journal of 
Information Technology, pp. 1-14, 2024. 

[19] M. Hussain, S. Nabi, M. Hussain, "RAPTS: 
resource aware prioritized task scheduling 
technique in heterogeneous fog computing 
environment," Cluster Computing, vol. x, pp. 1-
25, 2024. 

[20] M. Mokni, S. Yassa, J. E. Hajlaoui, M. N. 
Omri, R. Chelouah, "Multi-objective fuzzy 
approach to scheduling and offloading 
workflow tasks in Fog-Cloud computing," 
Simulation Modelling Practice and Theory, vol. 
123, pp. 102687, 2023. 

[21] A. B. Kanbar, K. Faraj, "Region aware dynamic 
task scheduling and resource virtualization for 
load balancing in IoT-fog multi-cloud 
environment," Future Generation Computer 
Systems, vol. 137, pp. 70-86, 2022. 

[22] K. Lalitha Devi, K. D. Thilak, C. 
Shanmuganathan, K. Kalaiselvi, "Fuzzy-GEC 
an energy-aware hybrid task scheduling on the 
cloud," Proc. of Advances in Data-Driven 
Computing and Intelligent Systems, pp. 443-
458, 2024. 

[23] H. Wadhwa, R. Aron, "Optimized task 
scheduling and preemption for distributed 
resource management in fog-assisted IoT 
environment," Journal of Supercomputing, vol. 
79, no. 2, pp. 2212-2250, 2023. 

[24] P. Shukla, S. Pandey, P. Hatwar, A. Pant, 
"FAT-ETO: Fuzzy-AHP-TOPSIS-based 
efficient task offloading algorithm for scientific 
workflows in heterogeneous fog-cloud 
environment," Sadhana, vol. 48, no. 1, pp. 80, 
2023. 

[25] N. Kaur, A. Kumar, R. Kumar, "TRAP: task-
resource adaptive pairing for efficient 
scheduling in fog computing," Cluster 
Computing, vol. 25, no. 6, pp. 4257-4273, 
2022. 

[26] E. Khezri, R. O. Yahya, H. Hassanzadeh, M. 
Mohaidat, S. Ahmadi, M. Trik, "DLJSF: Data-
locality aware job scheduling IoT tasks in fog-
cloud computing environments," Results in 
Engineering, vol. 21, pp. 101780, 2024. 

[27] S. S. Hajam and S. A. Sofi, "Spider monkey 
optimization-based resource allocation and 
scheduling in fog computing 
environment", High-Confidence Computing, 
vol. 3, no. 3, pp. 100149, 2023. 

[28] L. Altin, H. R. Topcuoglu, F. S. Gürgen, 
"Latency-aware multi-objective fog scheduling: 
addressing real-time constraints in distributed 



 

61 
 

environments," IEEE Access, vol. 12, pp. 
58459-58471, 2024. 

[29] T. Hameed, B. Jamil, H. Ijaz, "Efficient 
resource scheduling in fog: a multi-objective 
optimization approach," Proc. of the Pakistan 
Academy of Sciences: A. Physical and 
Computational Sciences, vol. 61, no. 1, pp. 19-
31, 2024. 

[30] R. Ghafari, N. Mansouri, "CODA: chaotic 
opposition-based differential evolution 
algorithm for task scheduling in fog 
computing," Journal of Computational Science, 
vol. 74, pp. 102152, 2023. 

[31] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, R. 
Buyya, "iFogSim: A toolkit for modeling and 
simulation of resource management techniques 
in the Internet of Things, Edge and Fog 
computing environments," Software: Practice 
and Experience, vol. 47, no. 9, pp. 1275-1296, 
2017. 

  

  

  

  

  

  

  

  

  

 

 

 

 

 

 


