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ABSTRACT 

This work presents a beam-column model for advanced analysis of steel frames. Tracing 
the effects of both geometric and material nonlinearities requires significant computational 
effort to maintain the accuracy of the analysis. The proposed element helps resolve the 
conflict between analysis accuracy and the number of required calculations by 
representing the physical steel member with a single element. Many existing studies 
present one-element-per-member models, but they assume lumped plasticity at the 
element’s nodes only, using plastic hinge analysis. In contrast, the present work is based 
on distributed plasticity analysis using one element per member, which provides a more 
realistic modeling of steel frames with fewer calculations. A fifth-order shape function is 
adopted to capture and model second-order effects. Numerical verifications are presented 
to demonstrate the accuracy of the proposed element by solving numerous benchmark 
frames and other examples under various loading conditions. 

Keywords:  Distributed plasticity, Space Steel Frames, Advanced analysis, Higher Order 
Element, Geometric Nonlinearity 

 

 

1 INTRODUCTION 

With the ongoing progress of employing different 
software facilities in the analysis and design of steel 
frames, the concept of advanced analysis gained more 
importance and attracted the researchers for years. 
Advanced analysis enabled structural engineers to 
perform accurate structural analysis that considers many 
effects were neglected before. First order elastic analysis 
neglects many effects that affect the behaviors of the 
steel frames such as geometric nonlinearity, plasticity 
spread, residual stresses, initial out of straightness and 
joints semi rigidity. The neglected effects mentioned 
raise the degree of uncertainty about the structural 
manner, and consequently the required safety factor rises 
which may produce uneconomic design. 

 The concept of advanced analysis is based on 
considering the effects that were neglected before by 
incorporating them into the analysis process, which 
reduces uncertainties about structural behavior and can 
help achieve more economic and safe designs. Many 
design specifications allow the use of advanced analysis 
to design steel frames [1], which provides more realistic 
modeling for more reliable, safe, and economic designs. 

The research on developing appropriate models for 
structural analysis began earlier, with many researchers 
attempting to provide an accurate representation of the 
frame behavior under different effects [2-4]. One of the 
main effects is the spread of plasticity in steel-framed 
structures. Unlike elastic analysis, which considers the 
yield stress as a failure point, inelastic analysis explores 
the behavior of the structure after the yielding of its 
elements. To capture the effects of plasticity during 
analysis, two main concepts were developed: plastic 
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hinge and plastic zone. Plastic hinge analysis assumes 
that plasticity occurs only at member nodes, while the 
rest of the member remains in the elastic stage [5, 6]. 
Plastic zone analysis assumes plasticity is spread along 
the entire length of the member, which is more realistic 
and accurate but comes with additional computational 
costs [7, 8]. To avoid the complexity of plastic zone 
analysis, many researchers have attempted to provide 
different methodologies based on the plastic hinge 
approach. 

  Unlike the sudden change in ordinary plastic hinges, 
the method of the refined plastic hinge (RPH) assumes 
the yielding at the section to be gradual, meaning the 
stiffness of the member changes gradually during the 
analysis. Earlier, Liew and Chen [11] investigated the 
concept of RPH, and due to its advantages, many 
researchers have adopted it for their work. Iu and 
Bradford [9] employed RPH to trace material 
nonlinearity with their fourth-order element. Zhou et al. 
[12] assumed a third hinge to be placed along the span to 
capture plasticity at different positions. Similarly, Dang 
et al. [10] tried to use the same concept but included joint 
semi-rigidity in the analysis. Zhou et al. [13] presented a 
refined plastic hinge model that takes the effects of local 
buckling and strain hardening into consideration. The 
models based on RPH present good accuracy; however, 
they still have a major weakness in considering 
concentrated plasticity. 

Plastic zone analysis, which considers distributed 
plasticity, can be performed using finite element 
analysis, representing the frame member using a fine 
mesh of shell or solid elements [1]. Shell or solid 
elements meshes are accurate and realistic for modelling 
steel frames, but it requires many calculations and 
complexity in modelling not appropriate for practical 
purposes. Therefore, they are usually used in scientific 
research and are not common in practical applications. 
Another method for plastic zone is by modelling the 
physical frame member by a number of beam-column 
elements, then the cross-section of each element is 
divided into many fibers, this process of division helps to 
capture the spread of plasticity along the span. Viana et 
al. [2] employed plastic zone analysis for their dynamic 
analysis of steel frames. Thai et al. [3] employed the 
distributed plasticity concept to analyze steel frames with 
semi rigid connections.  

The distributed plasticity analysis provides superior 
accuracy, especially when considering residual stresses 
[17, 18], this is why research studies tried to find 
solutions to reduce its required number of calculations 
which is the main disadvantage. Researchers such as Du 
et al. [6], [7], employed a flexibility-based approach as a 
different way of analysis that can trace plasticity spread. 
Also, flexibility-based work was employed by many 
researchers for tapered element analysis [40, 41]. 
However, flexibility-based analysis requires integration 
for the cross-section and along the member which costs 
more calculations. To save calculations, Zubydan [8] 

presented new formulas to obtain the section tangent 
stiffness of H-shaped sections directly without dividing 
the cross-section into many fiber elements. Elsabbagh et 
al. [9] developed the tangent stiffness formulas for I-
shaped sections.  

To capture second order effects due to geometric 
nonlinearity many methodologies have been found. First 
of all, when representing the member with finite element 
mesh of shells or solids, the second order effect is traced 
easily. But when using beam-column element, the 
accuracy of second-order analysis depends on the 
formulation of the beam column element. Stability 
functions found by Oran [10] provided the exact solution 
of the element considering the interaction between axial 
force and bending moment, however, it may cause 
divergence during analysis due to the different 
expressions for tension and compression cases. Many 
researchers used stability function in their advanced 
analysis such as Thai and Kim [11]. Although there was 
a great accuracy in representing axial flexural interaction 
by stability functions, researchers tried to find a model 
based on polynomial shape function to avoid solution 
divergence. Third order shape function produced a beam-
column, well-known as cubic element, that overcame the 
divergence issue, but the member should be divided into 
more than one element to maintain the accuracy [12]. To 
avoid dividing the member, higher order elements were 
found. Fifth displacement function by Chan and Zhou 
[13] produced a beam column element that accurately 
captured second order effects, known as (PEP) element. 
Also, Iu and Bradford [14] developed their own element 
based on a fourth order shape function and merged it 
with plastic hinge approach [15].  

The main dilemma was the direct incremental 
relationship between the accuracy and the required 
calculations. Zubydan etal. [16] produced their 
equivalent accumulated element which attempts to merge 
fourth order element with plasticity spread analysis 
without dividing the member. Their work has the 
limitations of fourth order element in geometric 
nonlinearity. For practical beam-column element 
analysis, most researchers incorporate stability functions 
or higher order elements with plastic hinge approach to 
represent the member using one element [17], but it 
neglected yielding along the span.  

The present work aims to provide a beam-column 
model using fifth order shape function and integrating it 
with the plasticity spread approach using one element per 
member. This approach helps to maintain the accuracy of 
tracing geometric and material nonlinearities. The used 
one element concept helps in saving size of matrices and 
calculation efforts. Unlike the other research studies that 
use cubic or fourth-shape function, the present work uses 
the fifth-order shape function which maintain the 
accuracy even with high slenderness ratios of frames. 
Also, for second order stiffens coefficients, the present 
work tries to enhance the ability of modelling high 
slenderness member by considering appropriate 
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equivalent rigidity. The element’s ability to trace 
moderately large deformations is going to be 
strengthened. The presented numerical examples 
demonstrate the superiority of the present work 
comparing to conventional cubic elements and plastic 
hinge approaches.  

2 ASSUMPTIONS AND SHAPE 
FUNCTIONS 

This section provides explanation of the adopted 
assumptions, and compares the capabilities of fourth and 
fifth order shape functions for second-order elastic 
analysis. As the present work is dedicated to higher order 
functions, the cubic function will not be discussed. 

2.1 Assumptions 

During derivation of the element is based on main 
assumptions.  
 

 Sections always are plane even after 
deformation  

 Local buckling and lateral torsional buckling 
are not allowed. 

 Shear deformation and warping effects are 
neglected, and members have bisymmetrical 
cross sections. 

 Loads are assumed to be nodal only. 
 Strain hardening of steel material is neglected. 
 Large rotations and displacements with small 

strains are considered 

2.2   Fourth Order Shape Function 

 

(a) 

 
(b) 

Figure 1: Member in Equilibrium; a) X=0 to L, b) 
X=-L/2 to L/2 

The frame element shown in Figure 1 assumes the 
same presented assumptions, and the fourth order shape 
function deduced by [14] used five boundary conditions 
based on the equilibrium in Figure 1.a where x ranges 
from 0 to L. The five boundary conditions are the values 
of displacements and bending moment at both ends, and 
also the value of bending moment at the mid span of the 
element to derive the fourth order function in Eq.1  
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(1) 

Where, � = ���/���  and � = �/�.  

The displacement function presented in Eq.1 was used 
in  [14] for elastic second order analysis, in [15] for 
concentrated plasticity analysis, and in [16] for 
distributed plasticity analysis. The deduced elastic 
stiffness coefficients are the same for both tension and 
compression cases, however, its accuracy decreases 
comparing to exact solutions of stability functions when 
the axial load factor � reaches high levels. 

2.3 Fifth Order Shape Function 

The fifth order shape function, which is adopted in the 
current research, was deduced in [13] depending on the 
frame under equilibrium, shown in Figure 1.b, 
considering the axis to start from mid span and x ranges 
from -L/2 to L/2. The difference is they considered six 
boundary conditions, that are the values of displacements 
and moment at element nodes, and the values of shear 
force and bending moment at midspan point. The 
additional condition of shear force value enabled the 
shape function to get higher order than the fourth.  

For the present work a fifth order shape function is 
going to be deduced to consider the element in 
equilibrium as shown in Figure 1.a, where x ranges from 
0 to L, to make the function applicable in the coming 
derivations. 

After applying the boundary conditions on the 
equilibrium of the element in Figure 1.a, a fifth order 
shape function is driven as shown in Eq.2. 
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Where, � = ���/���  and � = �/�. 
 
The elastic second order stiffness coefficients from 

fifth order function resulted a stable model in the 
analysis that does not cause divergence issues while 
maintaining acceptable accuracy. Many researchers tried 
to use this model during plastic analysis by combining it 
with plastic hinge approach. A key contribution of the 
present research is to merge the fifth order element with 
plastic zone approach to achieve a high accuracy in 
tracing both geometric and material nonlinearities.   

3 NUMERICAL DERIVATION 

This section presents the numerical derivation of the 
beam column element by deducing secant relations and 
ending to tangent stiffens matrix. An explanation of the 
main methodology of tracing plasticity spread is 
presented in Section 3.1. The secant relations are 
deduced in two steps. Firstly, the first order relations are 
presented in Section 3.2, after that the second order 
effect is included in the derivation by two different 
methods each of them provides a different numerical 
model can be used. So, the numerical verifications 
contain results of two models.  

3.1 The Equivalent Accumulated Element 

During inelastic analysis, the internal forces acting on 
cross sections escalate with the increasing of loading 
process. These internal forces can make some fibers of 
the steel element to yield. For any cross section with 
yielded parts, the value of sectional rigidity decreases 
due to plasticity spread, consequently the whole stiffness 
of the member degrades. The main concept of the 
equivalent accumulated element is to represent the frame 
element by one element and this element has a number of 
internal segments. Each internal segment is allowable to 
have different section rigidity, and this rigidity can be 
calculated by monitoring its start and end sections. The 
internal forces at the monitored cross sections are 
calculated, throughout the analysis process. The rigidity 
of the cross sections is evaluated based on the internal 
forces.  

 
Figure 2: Member under equilibrium with different values 

of EI 

Section 4 provides additional illustrations on the 
evaluation of the cross sections. The degraded internal 
segments due to plasticity cause the element to have 
segments with different values of ��, as shown in 
Figure2. The aim of this section is to provide stiffness 
first and second order coefficients for that element. 

 

3.2   First Order Relations 

Firstly, the first order stiffness for the member with 
variable segments has been provided in [16] based on 
Castigliano's second theorem. When considering P=0, 
the bending moment equation M� = ���(1 − �) − ��� � 
is used to get strain energy. Based on the strain energy 
function in Eq.3, the end rotations can be found by 
differentiating the energy with respect to the 
corresponding forces. 
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When performing the integration in parts and each part 
has its own ��� , a rearrangement can be implemented in 
the expressions to get the secant relations presented from 
Eq.6 to Eq.13. The coefficients were derived based on 
the previously mentioned assumptions and they are exact 
for first-order analysis. These coefficients don’t account 
for the interaction between axial and flexural effects. The 
first order secant relations for a member bent about z 
axis are presented in Eq.3 to Eq.10. 
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Where �� = ��/� 
It’s worth mentioning that the expressions don’t 

require the segments to be equal in length. Additionally, 
the change in segment rigidity can be random, without 
any restriction, unlike tapered member work. It’s noticed 
that, the presented formulas can model stepped element 
in elastic linear analysis. Also, all the factors provided 
can be calculated simply by accumulating process for all 
member segments. 

3.3 Secant Relations Including Second Order 
Effects 

At this stage of the derivation the modified fifth order 
displacement function, in Eq.2, is going to be employed 
along with the secant stiffness coefficients. The first 
model will be based on the second theorem of Castigliano 
in Section 3.3.1, and the second model uses a direct 
replacement technique to deduce the coefficients. Both 
models are tested through numerical examples to assure 
their accuracy.  

3.3.1 First Model of Fifth Order Shape 
Function  

The present model considers the equilibrium of frame 
element shown in Figure 2, considering the value of � ≠
0. The expression of shear force at node 1 can be 
represented as a function of ���, ���, ��� �. So, the 
expression for the bending moment along the member can 
be written as shown in Eq. 14.  

M� = ���(1 − �) − ��� � − � �   (14) 
Where � = �/�, and � is the shape function in Eq. 2. 

 
To employ Castigliano’s second theorem, the strain 

energy expressed in Eq.3 is employed but this time with 
the equation of bending moment in Eq.14. So, we can get 
expressions for end rotations by differentiating strain 
energy with respect to ��� ��� ���.  After substituting 
by the equation of moment and its differentiations about 
��� ��� ���, the expressions for end rotations are found, 
as presented in Eq.15 and Eq.16. The differentiation of 
equation of moment neglects the dedifferentiation of the 
term �� with respect to ��� ��� ���.  
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To perform the integration, it’s essential to take 

different values of ��� into consideration. So, integration 
in parts is going to be performed and that makes the 
expressions as follows.  
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    (18) 
The expressions in Eq.17 and Eq.18 can be specified 

and separated according to three parameters, 
���, ���, ��� ��. The term related to �� represents the 
effects of geometric nonlinearity, while the terms related 
to ��� ��� ��� are related to first order coefficients. The 
terms containing �� will be integrated directly from 0 to 
1 considering one approximate value of rigidity ���� ,for 

simplification, which will be discussed later in section 4 
and different methods will be presented for it.  
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Where the factors ���� �� ���� will be the same as 
Eq.11 to Eq.13. The parts ���� �� ���� are as following.  
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At this level, we can perform the integration as previously 
mentioned and solve the equations 19 and 20 with each 
other’s to get final secant moment relations as following.  
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Where ����, ����, ��� ���� are the same as 
presented in Eq.8 to Eq.13, and the factors 
���� ��� ����are expressed in Eq.28 and Eq.29. 
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For a three-dimensional frame, the previous work can 
be deduced for the bending about y axis and get secant 
stiffness corresponding to ��� ��� ���. As explained in 

Section 4, the used corotational procedure of analysis 
guarantees that the displacements in the three-
dimensional work are transformed accurately. 

3.3.2 Second Model of Fifth Order Shape 
Function 

 
A different methodology can be used to employ 

higher-order function with plasticity spread models. The 
steps of this method depend on finding the elastic secant 
stiffness of the element considering both first- and 
second-order effects. As the member is still elastic, the 
first-order coefficients separately are known as 4���/� 
and 2���/�. These elastic stiffness coefficients for the 
fifth order function have been found previously in [13] as 
presented in Eq. 30 to Eq. 33. 
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In the present work, the first-order stiffness 
coefficients found in equations 8 to 13 can include 
plasticity spread effects. Therefore, we will subtract 
elastic first-order coefficients 4���/�, 4���/�, and 
2���/� from the expressions ���, ���, and ��� in Eq.32 
and Eq.33, then replace them with the degraded first order 
coefficients ����, ����, ��� ���� which include the 
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effects of plasticity spread inherent in the variation of 
sections rigidity due to yielding. The final secant 
coefficients ���, ���, and ���  after modifications for 
second-order inelastic analysis can be expressed as 
follows. 
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3.4 Tangent Stiffness Matrices 

In the present work, an evaluation process to the 
capacity of the cross section is performed each loading 
increment. This evaluation process finds a new degraded 
rigidity for the cross section if any plasticity spread is 
found at the cross section. Section 4 illustrates the 

analysis procedure, including how the rigidity is 
evaluated. When the monitored sections have different 
values of ��, each internal segment will have its own 
value of ��. This means the plasticity spread is inherent 
already in the stiffness coefficients, and the tangent 
stiffness matrix can be found directly as if the member 
was elastic but with variable stiffness.  

Two main beam-column models have been presented 
in this paper. The first is based on the expressions 
deduced  

in Section 3.3.1, and the second model is based on 
expressions in Section 3.3.2. Tangent stiffness matrix 
can be found in Eq.30, but it must be notified that the 
difference between model 1 and model 2 will be related 
to the used values of expressions of ����, ����, ��� ����. 

The bowing functions related to fifth order shape 
function are employed to calculate factors like ���, ��� 
and ��which are the same for both modes. 

 
 

��� = 2��(��� + ���) + 2��(��� − ���) (38) 

��� = 2��(��� + ���) − 2��(��� − ���) (39)  
 

�� =
��

���
− �

��

��

 (��
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(40)  
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(41)  
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(42)  

 
The symbol � refers to axis z or y. The equation for 

axial force can be expressed as following.  

��
4

=

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

���� +
�����

�

�1�
2

��

���� +
�����

�

�1��2�

��

�����

�

�1� �1�

��

�����

�

�1� �2�

��

0
�����

�

�1�

���

���� +
�����

�

�1�
2

��

�����

�

�2� �1�

��

�����

�

�2� �2�

��

0
�����

�

�2�

���

���� +
�����

�

�1�
2

��

���� +
�����

�

�1� �2�

��

0
�����

�

�1�

���

���� +
�����

�

�1�
2

��

0
�����

�

�2�

���

����������� � 0
��

�3� ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

   (37)

 
 

 
 
 
 

 
 



 

8 
 

 

� = �� �
∆�

�
+ �  [��( ���  + ���)�

��� �

+ ��( ��� − ���)�]  � 

 
  
 
 

(43)  

 
Structure tangent stiffness matrix can be assembled as 

�� = ∑ �(�� ��
� ��������� )�� , where matrices [T] and 

[L] are to form the [12×12] matrix and to rotate the 
element from local to global coordinates, respectively. 
The matrix ��

� can be found in Eq. 37, while the matrix 
T is presented in the appendix. The matrix L for rotating 
the element can be found in [26]. 

4 ANALYSIS WORK FLOW 

This section illustrates the flow of the analysis, 
including several issues that need to be discussed to 
present a complete overview of the workflow of the 
models. 

4.1 Tracing Distributed plasticity 

As previously mentioned, this work aims to proceed 
with the analysis without dividing the member. So, 
during the analysis, the steel frame member will be 
represented by only one element with two nodes at start 
and the end of it. To trace plasticity spread along the 
span of the member, many sections will be specified 
along the span, as shown in Figure 3, and these sections 
will be monitored throughout the analysis process. After 
each loading variation during the analysis, the straining 
actions at each monitored section will be calculated, and 
that will be based on nodal forces, axial force, and 
element shape function at Eq.2. From the calculated 
straining actions, a new value for the tangent rigidity ��� 
will be found for each monitored section. The evaluation 
process of the value of ��� is explained in Section 4.2. 
Each internal segment of the element is assumed to be 
located between two monitored sections. The tangent 
rigidity for each internal segment is found as the average 
value of ��� at both monitored sections at the segment 
limits.  

 
Figure 3: One beam-column element with multi monitored 

sections 

The proposed models in the present work deal with a 
frame element with multiple internal segments, each of 
them has different values of ���. Therefore, the formed 

stiffness matrix at Eq.30 contains distributed plasticity 
effects.  

The positioning of monitored sections along the 
element is vital and needs to get some attention. 
Anticipation of the plasticity spread should be taken into 
consideration while allocating the monitored sections. If 
a zone of the member contains yielded parts and there is 
no monitored section near to it, the accuracy may be 
affected. Considering residual stress during the analysis 
raise the probability of plasticity spread along the span 
length [4].  For instance, a member with residual stress 
and axial force is predicted to have a range of plasticity 
along the span, so a number of monitored section should 
be found covering the whole member to maintain the 
accuracy. However, if the member extreme stresses are 
governed by bending moment values at ends only, the 
plasticity will be found near the ends only.  

4.2   Evaluation of Section Rigidity 

To calculate the tangent modulus for a cross-section 
under certain straining actions, two methodologies can 
be followed. The first method is discretizing the cross-
section into a number of small areas, called fiber model 
approach. The fiber model approach requires an 
integration process over the section areas, which 
consumes more calculation efforts. The second method is 
to employ direct formulas that can calculate the value of 
section inelastic rigidity ��� according to the section 
dimensions and applied forces. The present work 
employs direct formulas to evaluate tangent modulus for 
all monitored sections of the elements. So, the whole 
procedure of analysis will be based of closed form 
solutions that do not require internal integration neither 
across the section area nor along the element length. The 
formulas found in the research studies [21, 22, 30, 31, 
32] are used in the current research as they can cover all 
cases of H-shaped and I-shaped under different mixes of 
loadings. Also, these formulas are available for sections 
considering or neglecting residual stresses. 

4.3 Equivalent Stiffness of Members 

The derivation in the present research assumed an 
equivalent value of the rigidity ����  to be used for the 

members in calculating second order terms only. This 
value is allowed to be approximate as the used procedure 
makes its effect to be limited at the second order terms 
only, while the first order terms are based on the 
calculated different values of �� at each monitored 
section. Although this approximation seems to be 
limited, the present research suggests two different 
techniques to consider ����  to assure the accuracy of 

model in different circumstances. The numerical 
examples in Section 5.6 were solved using both of the 
two methods in Sections 4.31 and 4.32, and no difference 
in results between them was notified. So, all the 
presented results in this paper are based on using the 
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elastic value for second order terms as declared in 
Section 4.3.1. 

4.3.1 Elastic Rigidity Technique 
The value of elastic �� is the exact one for the elastic 
range of loading. When yielding starts to spread, the 
second order terms start to contain a kind of 
approximation. However, this approximation will not 
have a significant effect, as assured by the numerical 
examples in Section 5. That can be understood by 
knowing the type of nonlinearity that controls the 
analysis. When a member has a high slenderness ratio, 
the geometric nonlinearity governs the analysis and 
second order terms has a large value. In the previous 
condition, the buckling occurs while most of the member 
still elastic and plasticity may be found but concentrated 
at certain areas. So, the elastic values can be 
representative for the majority of member. In another 
case where the member has low slenderness ratio, the 
plasticity may spread along the member in different, 
zones and the value of elastic �� loses its accuracy in 
representing the member. However, the whole values of 
second order terms are small as plasticity controls the 
analysis, which means the approximation is trapped in 
small values with no significant effects on the results. All 
solved bench marked frames in Section 5 employed the 
elastic value as ���� . 

4.3.2 Variation of Elastic Load Technique 
 The elastic load on a segment of the member is the 

area of bending moment divided by the value of section 
rigidity. An approximate value of ����  can be found by 

equating the value of elastic load of the member with 
multi-internal segments with the value of elastic load of 
the member with one approximate ���� , and that is by 

applying the equation ∑(���/���) =  (∑ ���)/����  

during the analysis extracting a value for ���� . 

4.4 Analysis Scheme  

Figure 4 shows the analysis flow chart for the 
developed software for the analysis. Arch length and 
minimum residual displacement solution strategies are 
used to solve the incremental iterative developed 
procedure. The replicated updating of sections tangent 
modulus helps in making convergence rabidly in case of 
inelastic buckling, as it helps to control the unbalance 
force vector as small as possible.  

Throughout the analysis procedure, the 
incremental equilibrium equation will be as declared in 
Eq. 44 to start iteration number i at step number j.  

 

[����
�

] ����
�
� = ����� �

�
� − ����� ���

�
�     (44) 

  

where, [����
�

] is the last updated tangent stiffness matrix 

from iteration number i-1. And ����
�
� is the generated 

unbalanced displacement vector after solving the 

equilibrium condition. The vector ������
�

� is the last 

updated internal force vector from previous iteration. 

The vector ����� �
�

� is the external force vector which can 

be updated each iteration as the following. 
 

����� �
�

� = ����� ���
�

� + ���
�
 {�����

^ }  (45) 

  where, {�����
^ } is the reference load vector. The 

factor ���
�  is the load increment factor for the jth iteration 

in the ith increment, which is calculated according to the 
adopted nonlinear solution strategy depending on the 
vectors from previous iteration. 

 

 
Figure 4: Analysis Flow Chart 

 

5 NUMERICAL EXAMPLES 

 
The numerical examples are in two main categories. 

The first category examples are the well-known 
benchmark structures that have solutions, we compare 
the results of our model with to assess the overall 
accuracy of the proposed models. Then other examples 
are provided to assure the availability of the models in 
cases with wide range of slenderness and plasticity 
spread. 
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5.1   One Story Portal Frame 

The portal frame in Figure 5 was analyzed by Thai and 
Kim [21]. They provided accurate solution by meshing 
the frame to twenty elements per each member using 
ABAQUS software. The geometry and section 
dimensions are shown on Figure 5, while the assumed 
steel material had the Young’s modulus E = 19613 MPa 
and yield stress σy = 98 MPa. The frame is analyzed in 
the present research using one element for each member. 
The rectangular cross section has no residual stresses and 
fiber model is used to evaluate plasticity spread across 
the area of section. The monitored sections are placed at 
location 0.05L and 0.1L from both sides of the member 
as the plasticity is anticipated to be found near ends at 
this example. The analysis results are presented in Figure 
6 and show that the presented models are able to trace 
geometric and material nonlinearity accurately.  

 

 
Figure 5: Portal Frame with Rectangular Section 

 
Figure 6: Analysis Results Portal Frame with Rectangular 

Section 

5.2 Multi Story Plan Frame 

The plan frame in Figure 7 is a well-known example 
presented by Vogel [22], as the frame was solved 
accurately via plastic zone method and accurate solution 
found. The steel modulus of elasticity is 205 GPa, and 
the yield stress is 235 MPa. The geometry of frame in 
Figure 7 is exposed to geometric imperfection, out of 
plumpness, with an inclination 1/450 for the columns of 
the six stories.  

 
Figure 7: Vogel’s Six Story Frame 
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The main example solved by Vogel had residual 
stresses as material imperfection. Barasan and Chiorean 
[5] provided solution for the frame neglecting residual 
stress during their work on the influence of material 
nonlinearity. Many other researchers solved the frames 
with their own models to assure their accuracy, such as 
the work in [9, 35].  

This frame is modeled and solved using the present 
models to check the reliability of the models. The 
structure has uniform distributed load on the horizontal 
element, that’s why only beams are modeled as four 
elements for each beam to be able to add span loads as 
multi nodal forces. The results shown in Figures 8, 9 
reveals the accepted accuracy of the models considering 
or neglecting residual stresses. 

 
Figure 8: Analysis Results of Vogel’s Frame Including 

Residual Stresses 
 

 
Figure 9: Analysis Results of Vogel’s Frame Neglecting 

Residual Stresses 

5.3 Two Story Space Frame with Rectangular 
Section 

The three-dimensional frame in Figure 10 has been 
solved in many research studies as a part of the evaluation 
process. This frame has been analyzed by Desoza [24] 
using force-based methodology to capture geometric and 
material nonlinearities. Also, the work in [23] employed 
the same frame to check their proposed model abilities. 
This frame is solved using our own proposed models and 
the results are compared to others to assure the accuracy. 
It’s worth mentioning that the members with mid-span 
concentrated loads is modeled by to elements as nodal 
forces only are allowed in the current work. The 
monitored sections are allocated at positions 0.05L, 0.2L, 
and 0.5L of each end, which guarantees tracing the 
plasticity at the members. The compared results are 
presented in Figure 11. 

 
Figure 10: Two Story Space Frame with Rectangular 

Section 

 
Figure 11: Analysis Results of Two-Story Space Frame with 

Rectangular Section 
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5.4 Two Story Space Frame with H-Shaped 
Section  

The steel frame in Figure 12 is an well-known 
benchmark frame found by Coung and Kim [25]. They 
presented an accurate solution for the frame with H-
shaped cross section using ABAQUS software. Their 
reference results were based on performing a fine mesh of 
shell elements with total number of elements equals 
49840. The analysis included residual stresses and also 
geometric imperfections as columns out of plumpness. 
The value of the force P equals 80 KN. The dimensions 
of the cross sections is H 150x160x10x6.5, while the 
material has 320 MPa and 221 GPa for yield stress and 
elastic modulus, respectively. 

 

 
Figure 12: Two Story Space Frame with H-Shaped Section 

 Detailed information about the geometry of the 
frame and the modelling of reference solution preparing 
can be found in [25]. Also, Li et al.[26] and Liu [23] 
performed inelastic analysis for this frame, which also is 
performed in the present work using a single element per 
member, considering only 16 frame elements. The 
monitored sections are poisoned at 0.05L, 0.2L, 0.5L 
from each node.  

 
Figure 13: Analysis Results of Two-Story Space Frame with 

H-Shaped Section  

The results for displacements at the roof are 
presented in Figure 13. Although the work in [23] used 
three plastic hinges at the member, it seems that the 
effect of plasticity spread was not captured as accurate as 
the models of the present work. Which declares the 
superiority of the present model in tracing geometric and 
material nonlinear effects. 

5.5 Six Story Space Frame 

The space frame in Figure 14 has been tried in many 
researches. The reference solution was provided in [27] 
using finite element modelling via software USFOS to 
check their work of improved refined plastic hinge. Also, 
it has been analyzed by Liu [23] using three hinges 
model. The results of analysis are compared with the 
proposed models results. The previously mentioned 
analysis in [35, 39] required additional span hinges to 
represent plasticity spread, unlike the proposed models 
based on one element for member. The curves for the 
analysis are provided in Figure 15.  
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(a) 

 
(b) 

Figure 14: Geometry of Six Story Space Frame; a) 3-D 
View, b) Plan 

 
Figure 15: Analysis Results of Six-Story Space Frame  

5.6 Cantilever Columns Under Different 

Circumstances 

To assure the reliability of the proposed technique, two 
cantilever columns of H and I shaped cross sections, in 
Figure 16, were analyzed. They have been solved with 
under different loading conditions with different values 
of member slenderness.  

The analysis results are compared with the results 
when dividing the frame into ten beam-column elements 
following the plastic zone procedure referred in [8]. 
Analysis results of a cantilever with I-shaped section 
with section W250x24 are presented in Figures 17-19. 
While for a cantilever with H-shaped section with 
section W250x80, the results are presented in Figures 
20-22. The material is assumed to be steel with 500 MPa 
and 200 GPa for yield stress and elastic modulus, 
respectively. The figures show the results of one element 
per member for the present models (1, 2) based on fifth 
order function and also when using cubic element 
geometric matrix. 
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Figure 16: Cantilever Column Under Different Loading 

Conditions 

 
Figure 17: Analysis Results of Cantilever with H-Shaped 

Section Loaded in Major Axis 

  
Figure 18: Analysis Results of Cantilever with H-Shaped 

Section Loaded in Minor Axis 
 

 
Figure 19: Analysis Results of Cantilever with H-Shaped 

Section Loaded in Both Axes 

 

 
Figure 20: Analysis Results of Cantilever with I-Shaped 

Section Loaded in Major Axis 

 
Figure 21: Analysis Results of Cantilever with I-Shaped 

Section Loaded in Minor Axis 
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Figure 22: Analysis Results of Cantilever with I-Shaped 

Section Loaded in Both Axes 
 

 
 
 

7. APPENDIX 

6.CONCLUSION  

This work presented a beam-column element for 
second order inelastic analysis of frames. The work 
employed a displacement function from the fifth order 
that traced geometric nonlinear behavior accurately. The 
proposed element included plasticity spread along the 
member span without dividing the it. The technique used 
in the analysis employed direct substitution into 
equations without performing integrations during the 
analysis neither across the sectional area nor along the 
element length. The presented element overcame the 
limitations of lower degrees elements in geometric 
nonlinearity, and the approximations of plastic hinge 
analysis. Many solved examples with various plasticity 
spread cases have been solved to check the model’s 
performance. The results demonstrated that, the model 
effectively captures both material and geometric 
nonlinearities while minimizing computational time and 
storage requirements without compromising accuracy. 
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T is the matrix transforms [6x6] stiffness matrix to [12x12] including shear stiffness in corotational coordinating 
approach. 
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