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ABSTRACT 
This work provides a new model for the advanced analysis of steel frames subjected to 

span loads. The proposed model tries to overcome many issues of the analysis. A one 
element per member concept is used. Large deflection effects are considered by employing 
fifth order displacement function that takes member lateral loads into consideration. The 
interaction between the axial force effect and flexural actions is taken into consideration 
including the actions due to span loads. Plasticity spread along the member span is traced 
and modeled by monitoring number internal section along the span, then plasticity effects 
at these sections are merged in the one element stiffness matrix. This model helps to 
overcome limitations related to one element approach, as most one element models allow 
nodal loads only, or concentrated plasticity. The accurate representation of plasticity 
spread in the present model enables the model to take into consideration the variation in 
fixed end forces due to material yielding.  A finite element program is prepared based on 
the proposed model. Many steel frames are solved and the results are compared with 
solutions by other research or by solutions from fine mesh analysis. The proposed model 
presented high accuracy without much calculation cost. 

Keywords: Plasticity Spread, Three-dimensional Frames, Span Loaded Element, Second 
Order analysis, Beam-Column Element 

 

1 INTRODUCTION 

Many steel design specifications have considered 
the method of direct analysis which allows representing 
the second order effect by performing nonlinear analysis 
[1]. That’s why the concept of advanced analysis of steel 
frames attracted more attention of structural engineering 
research studies [2], [3]. Structural engineers usually 
employ computer models based on finite element 
analysis for the purpose of steel frame analysis and 
design. During steel frames modelling, finite element 
models (FEM) based on solid or shell elements can 
represent the behavior of structures producing more 
accurate results than the FEM based on beam-column 
element. However, the mentioned accuracy of solid and 
shell FEM costs much time for modelling and 
calculations. That’s why most steel structure engineers 
employ beam-column elements in their models. 

Consequently, the goal of many researchers was to 
improve the abilities of beam-column elements to 
accurately represent steel members nonlinear behavior 
accurately without costing much calculations.  

To include large deflection effects in the beam-
column element, Oran [4] employed stability functions in 
the analysis of planner and space frames, however, 
convergence issues appeared sometimes due to the 
different formulas for tension and compression. These 
stability functions were employed in many research 
studies with various additions to include different effects 
of geometric nonlinearity such as, torsional stiffness 
modifications [5],  member initial imperfection [6], and 
lateral torsional buckling [7]. 

Research studies tried to work on polynomial 
shape functions with the principle of minimum potential 
energy to drive a beam-column element that can 
overcome the convergence issues of stability functions 
element. Based on a third order shape function, Meek 
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and Tan [8] generated the well-known cubic element and 
employed it in nonlinear analysis of space frames. Many 
publications included research studies on structural 
analysis of frames based on cubic element such as the 
work in [9]. Teh [10] investigated the accuracy and 
reliability of that element to represent steel space frames 
and concluded that frame member should be divided into 
more than one cubic beam column element in the 
analysis to obtain a sufficient accuracy. 

At this point, the nonlinear analysis of framed 
structures faced two problems, the first was convergence 
issues when using stability functions and the second was 
the accuracy when using one cubic element per member. 
In 1994, based on a shape function of fifth order, Chan 
and Zhou [11] found the point wise equilibrium element 
(PEP) which achieved an obvious progression by 
Tackling mentioned issues of both stability functions and 
cubic element. They extended their work to include 
geometric imperfection to the element [12], and also 
many other researchers used the (PEP) element in their 
work either by employing it directly in their analysis or 
by making modifications on it [13],[14]. Also, the effect 
of shear deformation was included in the (PEP) element 
[15] to enhance its accuracy in different conditions of 
analysis. The advantages of stiffness coefficients 
produced by -PEP- element encouraged other researchers 
like Iu. and Bradford [16] to develop other beam-column 
elements based on polynomial fourth order shape 
function.  

Practical advanced analysis requires representing 
both geometric and material nonlinear effects to achieve 
optimum design of steel frames [17]. Beam-column 
elements were utilized in the advanced analysis of 
frames by many methods of modelling both geometric 
and material nonlinearity. The different methods of 
inelastic analysis consider material yielding either as 
lumped plasticity at member nodes or distributed 
plasticity along the member. Plastic hinge analysis, 
which represents plasticity concentrated at nodes, 
requires less calculations and attracted the attention of 
research studies along the years [18], [19]. Chen and 
Chan [20] developed one beam column element with 
three nodes and three probable plastic hinges, two at 
member ends and one at mid span. 

 During plastic hinge analysis, zero length 
rotational springs are considered which encouraged 
research studies such as [21], [22], [23] to model frames 
employing plastic hinge concept and including effect of 
joints’ semi-rigidity. Also, Refined plastic hinge method 
was developed [24], which allowed the gradual yielding 
of hinges to be captured and modeled presenting more 
accuracy, that made it more desirable by researchers and 
widely used in the analysis [25], [26], [27], [28]. Zhue et 
al.[29], [30] improved the refined plastic hinge to make 
it represent the local buckling and strain hardening of 
material effects. S. Lee et al. [31] used plastic hinge 
analysis to produce a large amount of data set, which 
was employed in training machine learning models that 

can help in predicting positions of probable plastic 
hinges for structures without performing the nonlinear 
analysis. 

Unlike plastic hinges that are based on yielding 
surface equations, S. Kim et al. [32] used fiber hinge 
model that was based on dividing the cross section in 
many fibers. That fiber hinge has a length of the member 
can model plasticity at this length only, also a third one 
can be modeled along the span. The length of fiber hinge 
can affect the accuracy of the analysis [33], [34]. Nguyen 
and Kim[35] used fiber hinge to capture plasticity effects 
while working on modes that can calculate lateral 
torsional buckling. Although the fiber hinge coasts 
additional calculations during analysis, plasticity spread 
is neglected at member zones rather than the fiber hinge 
zones. Also, Zhou et al. [36] tried to capture span 
plasticity by allowing a refined plastic hinge to form at 
an arbitrary location along the span with the 
consideration of residual stresses effect. The distributed 
plasticity along the span can be traced with more 
accuracy using plastic zone analysis instead of plastic 
hinge. The early work by Elzanaty [37] aimed to produce 
accurate calculation of steel frames with distributed 
plasticity. Through years, researchers tried to develop 
techniques for plastic zone analysis with more simplicity 
in modelling and a smaller number of calculations with 
satisfying accuracy. Chiorean and Barasan[38] employed 
flexibility approach to find beam column elements that 
can trace distributed plasticity, and the work was 
extended for tapered members [39] and semi rigid frames  
[40]. Du. et al. [41] included geometric imperfection and 
shear deformation in their force-based analysis for 
distributed plasticity, while Chen et al. [42] included 
geometric imperfection on flexibility-based analysis for 
tarped elements. Displacement-based analysis was used 
by others, such as Viana et al. [43], Zubydan [44], for 
plastic zone analysis, however they had to use more than 
one element for each frame member to trace span 
yielding. Formulas can be used in tracing plasticity 
spread across the section of the element, such as the 
proposed in [44], [45], [46], [47], [48], which are 
available for different loading directions on I-shaped and 
H-shaped cross-sections. Zubydan et al. [49] developed 
their equivalent accumulated element to represent 
distributed plasticity, however their model is limited to 
elements under nodal forces only. 

Unlike many beam-column analysis which 
assume loads to be nodal only, Zhou and Chan [50] 
modified the PEP element to allow member distributed 
loads for elastic analysis. Kim and Choi [51] used 
stability functions with refined plastic hinges for 
modelling frame elements with span loads. The 
derivation of second order stiffness coefficients can be 
affected by the types and shapes of loads, that can lead to 
different second order stiffness factors for each load 
shape. Trying to find an element with generalized load, 
Iu. and Bradford [52] developed their work on the fourth 
order shape function in [16] to produce element with 
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transverse loads. The concept of generalized element 
load used in [52] was employed by Iu. [53] reproducing 
the fifth order shape function for the element with 
transverse loads. To add material nonlinearity to the 
analysis of frames with span loads, the well-known 
refined plastic hinges analysis can be employed such as 
[54], however, the plasticity spread along the span can’t 
be captured without dividing the member to many 
elements. Lateral span loads on frame element increase 
the probability of yielding along the member length. At 
the present work, the authors aim to develop a beam-
column element that can represent the member with span 
loads using a single element per member during second 
order analysis but considering distributed plasticity. The 
research overcomes the obstacles of misleading results of 
concentrated plasticity assumption. Unlike many other 
research studies, the effect of plasticity spread on 
converting span loads into nodal forces is captured and 
represented accurately in the present work.  

2 ELASTIC ELEMENT MODEL  

This section demonstrates the stiffness relations for 
the element shown in Figure 1. These relations were 
firstly deduced in  [50] to allow the element span loads to 
be included in the elastic second order analysis. They 
have derived a fifth order shape function, which has been 
rearranged in the present work in Eq. 1, considering the 
bending moment at mid-span due to lateral loads, ��, as a 
part of the boundary conditions. 
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Figure 1: Member under equilibrium including span loads 

effects 
 Using the principle of total potential energy, the 

relations for secant stiffness can be found, as shown in 
Eq. 2 to Eq. 5. Where U is the strain energy, R is the 
work done by nodal forces, and T is the work done by 
span loads 
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Where, u is the axial shape function, w(x) is the 
element span load function, �� ��� γ� is the nodal are the 
nodal forces and their corresponding displacements. The 
equilibrium equation can be deduced from the first 
variation of the total energy function as �� = 0. After 
performing the equilibrium, the secant relations can be 
found. It is worth mentioned that the differential operator 
in the expression �� refers to ��/�γ�+ ��/�� × ��/
�γ� . However, this equilibrium condition contains the 
term of energy due to span load function, which means 
each shape of span load can produce different expression 
for the stiffness coefficients. The equations from Eq. 6 to 
Eq. 12 present the elastic secant relations. 
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Where, ��� ��� ��� are the nodal rotations, ∆� is the 
axial shortening, � = ���/��� , and ��

���� = ���/��� . 

The coefficients ���
��� and ���

��� are the equivalent 
values for converting element span loads to be nodal 
loads, known as fixed end moment.  

The factors ��, ��, and �� are the second order and 
bowing terms due to span load, these are affected by the 
term � in the equilibrium equation which depends on the 
equation of span load �(�) as shown in Eq. 5. Which 
means new different factors for each shape of loading. 
These expressions represent the interaction between 
axial force and flexural coefficients related to span 
loads. 

The work in [50] deduced the equations of these 
factors considering the span loads to be modeled in three 
different shapes. The first shape as one concentrated load 
at the mid-span, the second shape as two concentrated 
loads, and the third shape as uniformly distributed along 
the span, shown in Figure 2. These expressions for second 
order relations, found in [50],  are used in the present 
work for their corresponding loading shapes but for 
distributed plasticity analysis that is going to be deduced 
in Section 3. 

 

(a) 

 

(b) 

 

(c) 

Figure 2: Member with Span Loads; a) One Concentrated 
Load , b) Two Concentrated Loads, c) Uniform Distributed 
Along The Span 

For the element with distributed load on a part of the 
span, in Figure 3, the present work used the same 
methodology to provide new formulas for the coefficients 
��, ��, and �� in Eq. 13, Eq. 14, and Eq. 15, respectively. 
It can be noticed that, when the value of the distance a 
equals zero, the deduced expressions turn to be the same 
as the coefficients for the member shown in Figure 2.c. 
Another load shape is presented in Figure 4, which 
contains a member with triangular load. The same 
methodology was applied and the coefficients were 
deduced and presented in Eq. 17 to Eq. 20. Then, in the 
next step of the present work, all secant relations are 
going to be modified, in Section 3, to be capable of 
modelling inelastic behavior of the steel element, which is 
the major novel contribution of this work.  

 
Figure 3: Member with Uniform Load on Part of Span 
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Figure 4: Member with Triangular Load 
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All the previously mentioned stiffness relations are 
available for elastic analysis only. However, the factors 
related to span loads can be specified as first and second 
order factors. The second order factors ��, ��, and �� 
vanish when the axial force equals zero.  

 
Figure 5: Comparison of Different Formulas to Calculate 

Second Order Coefficient �� 

The comparison shown in Figure 5 declares that the 
generalized formula deduced in [54] has a noticed 
difference from the calculated either by [50] or in the 
present work. That difference occurred as the work in 
[54] neglected the differentiation of the external work by 
span load, in Eq. 5, respect to the load parameter q. They 
assumed ��/�� to equal zero, which affected the 
accuracy of their expressions. Although the main purpose 
of the present research is to develop inelastic relations for 

different load shapes as presented in Section 3, we did use 
the general expression by [54] due to its lack of accuracy. 
So, we have deduced our own accurate second order 
factors ��, ��, and �� for each load shape solved this 
paper.  

The first order factors ���
���  and ���

���  are not 
affected by the value of axial force, and they are deduced 
based on the linear displacement function as they can be 
deduced using Eq. 21 and Eq. 22. 
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Where, �� is the linear shape function of the element, and 
�(�) represents the equation of the load. For example, 
performing the integration in Eq. 21 and Eq. 22 for a 
uniformly distributed load with a value equals W 

produces values as ���/12 and −���/12 for ���
��� 

and ���
���, respectively.  

3 INELASTIC ELEMENT MODEL 

This section is dedicated to deriving the stiffness 
coefficients for the beam column element including span 
load effects. Firstly, the assumptions and main 
methodology of element formulations are presented. 
Then, the first order relations are deduced, which include 
stiffness coefficients and the converting span loads to 
nodal forces (fixed end moment). Finally, the first order 
coefficients, including plasticity spread effects, are 
replaced in the elastic second order coefficients to 
upgrade them for plastic analysis.  

3.1 Assumptions 

 

• Conservative span lateral loads are allowed. 
 

• Plasticity is allowed to be distributed along the element 
span. 
 

• Sections always are plane even after deformation 
 

•  Local buckling and lateral torsional buckling are not 
allowed. 
 

• Shear deformation and warping effects are neglected, 
and members have bisymmetrical cross sections. 
 

• Strain hardening of steel material is neglected. 
 

• Large rotations and displacements with small strains 
are considered. 

3.2 The Equivalent Accumulated Element 

Steel frame members have constant section rigidity 
during elastic stage of the analysis process. However, 
when the values of stresses increase beyond yield limit 
the sectional rigidity decreases. Unlike the plastic hinge 
analysis assumption, the current work depends on 
assuming the plasticity to be allowed along the span, 
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which is more realistic and accurate of representing the 
frame element. In the present research, Section 4 
provides a brief about how the plasticity spread is 
captured and the member with yielded parts is converted 
to the equivalent element and how the tangent rigidity of 
the sections is calculated.  

 As shown in Figure 6, the frame element with yielded 
parts is represented by one beam-column element with 
many internal segments each of them is allowed to have 
different values of ��. This variation of rigidity along the 
span affects not only the stiffness coefficients of the 
element, but also the values of fixed end moments 
transforming span loads to nodal forces. It must be 
notified that the values calculated from Eq. 21 and Eq. 
22 are no longer accurate as they are first order forces 
based on linear shape function which is not applicable 
any more after plasticity existing.  

 
Figure 6: Tow Nodes Element Representing Member with 

Yielded Parts 

3.3   First Order Relations for Degraded 
Element 

This section is dedicated to deduce the expressions of 
first order relations considering the member to have span 
loads. The calculated relations include the first order 
stiffness coefficients and the first order fixed end 
moments, and both of them consider the member to have 
different values of EI for its internal segments as declared 
in Section 3.2.  

For different span load shapes, the stiffness 
coefficients are the same while the fixed end moment 
relations change according to the shape of the load. The 
present work provided the solutions for five different 
shapes of loads which have been presented in Figure 2, 
Figure 3, and Figure 4.  

3.3.1 Member with Uniform Distributed 
Load 

The member is assumed to have many internal 
segments and each of them has a value of ���, which 
represents the inelastic section rigidity due to plasticity 
spread. As the plasticity has been already modelled by 
considering the different values of EI for the internal 

segments, so the member on its new conditions can be 
treated as elastic member, and the principles of 
Castigliano's second theorem can be applied. This 
theorem assumes the strain energy to be expressed as 
functions of the generalized forces, then performing a 
differentiation with respect to a generalized forces 
produces the corresponding displacement to it. So, strain 
energy can be expressed as shown in Eq. 23, and this 
equation can be differentiated with respect to ��� and 
��� to get the expressions for ��� and ���, respectively, 
shown in Eq. 24 and Eq. 25. 
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Figure 7: The Equivalent Element under Uniformly 

Distributed Span Load 

For the member shown in Figure 7, we can simply 
find the equation on bending moment as presented in Eq. 
26.  
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By substituting in Eq. 24 and Eq. 25, the expressions 
of nodal rotations convert to be as following.  
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The value of ���  changes along the element span 
according to each internal segment, that’s why we are 
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going to perform the integrations along an arbitrary 
segment K and accumulate the number n of internal 
segments along the element span. That makes the 
expressions of the nodal rotations to be as following.  
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Now, we can perform multiplications and integrations in 
limits of the arbitrary segment. Also, the resulting 
equations can be arranged according to the terms of ���, 
���, and W, and that generate the expressions from Eq. 
31 to Eq. 37. 
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Where, ∆��
� =  ��

� − ����
� , �� = ��/�, and K ranges from 

1 to n number of segments. 
To find the secant relations, we can solve Eq. 31 and 

Eq. 32 together and arranging the equations to be as 
following. 
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Where, ����, ����, and ���� are the first order 
secant stiffness coefficients. While ���� and ���� are the 
first order fixed end moments. The expressions from Eq. 
40 to Eq. 44 show these coefficients after the final 
arrangement. 
 

���� =
−����

����
� − ��������

 
(40) 

���� =
−����

����
� − ��������

 
(41) 

���� =
����

����
� − ��������

 (42) 

���� = −�������� − �������� (43) 

���� = −�������� − �������� (44) 

 
The deduced coefficients ���� and ���� vanish 

when there is no span lateral load applied. However, 
when there is a span load, these coefficients represent the 
first order fixed end moment considering the variation of 
the sections rigidity due to plasticity spread. During the 
earlier stages of an advanced analysis process, the 
member stills elastic and all the internal segments have 
the same value of  ��� . In this case, the deduced formulas 
for the coefficients of equivalent nodal forces 
���� ��� ���� will finally convert to the results of 
���/12 and −���/12, the same as elastic conventional 
fixed end moments.  

The same sequence can be adopted for different load 
shapes. The difference will be in the expression of 
bending moment which will affect only the coefficients 
����, ��� ���� and consequently ���� and ����. And 
that makes sense as the stiffness coefficients are not 
affected by the span loads. 

3.3.2 Member with Concentrated Load at 
Arbitrary Location 

 
Considering the element shown in Figure 8, the same 

methodology in Section 3.3.1 can be applied using the 
appropriate expression of bending moment which should 
be presented in two parts as following in Eq. 45. Where 
� = �/�. 

M� = ���(1 − �) − ��� � − ���(1 − ��)� 
(45.a) 

For � = 0  �� �� 

M� = ���(1 − �) − ��� � + �����(� − 1) 

(45.b) 
For � = �� �� 1 
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Figure 8: The Equivalent Element under One Concentrated 

Load at an arbitrary Location 

 
The expression of moment changes depending on 

the value of � comparing to the value of ��, so that, the 
integration along the span is going to be performed in 
parts each part uses its corresponding equation of 
moment as shown in Eq. 46 and Eq. 47.  
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(47) 

 
After performing the integrations and arranging the 
formulas, all expressions in equations from Eq. 31 to Eq. 
44 will be the same except the expressions for 
����, ��� ���� that will change to be as shown in Eq. 48 
and Eq. 49. 
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�����
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1

2
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For the load shape presented in Figure 2.a, in which 

the concentrated load locates at mid span, the formulas in 
Eq. 48 and Eq. 49 can be employed effectively by 
considering the value of �� equals 0.5. 

3.3.3 Member with Two Concentrated Loads at 
Symmetric Distance from Center 

 

For the load shape shown in Figure 2.b, the element is 
subjected to two concentrated forces at symmetrical 
distance from both member ends. To be able to find the 
corresponding fixed end relations, we can apply the 
principles of super position. Instead of deducing fixed end 
moment for two loads, the present work has already 
found the formulas for fixed end moment due to one 
concentrated load located at an arbitrary location along 
the span, in Section 3.3.2. Regarding the first order 
relations, the concept of super position can be applied 
without compromising the results. The second order 
relations effects were found previously in [50]. For the 
case of two loads, the fixed end moment can be calculated 
separately for each of them and summation can be 
performed. 

3.3.4 Member with Uniform Load on a Part of 
Span 
 

 
Figure 9: The Equivalent Element under Uniform Load 

Along Part of The Span 
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Using the same sequence first order relations for the 
load shape in Figure 9 can be found. However, in the 
present case, the integration process has to be performed 
in three intervals according to the variation in the 
expression of bending moment. The factors 
����, ��� ���� are shown in Eq. 53 and Eq. 54. 

Where, ∆��
� =  ��

� − ����
�  and the factor ��   depend 

on the shape of lateral load as �� = ��/� . It can be 
noticed that if �� = 0 , the expressions in Eq. 50 and Eq. 
51 reach to be the same as in Eq. 33 and Eq. 34. 

3.3.5 Member with Triangular Load 
 

For the load shape in Figure 10, the expressions for 
first order secant relations can be found with the same 
previous procedure. It must be noticed during the 
derivation that the expression of bending moment is 
divided into two intervals as shown in Eq. 52. After 
performing the integrations, the coefficients of 
����, ��� ���� corresponding to the triangular load can 
be derived as presented in Eq. 53 and Eq. 54.  

M� = ���(1 − �) − ��� � +
���

12
(−3�

+ 4��) 
(52.a) 

For � = 0  �� 0.5 

M� = ���(1 − �) − ��� � +
���

12
(1 − 9�

+ 12�� − 4��)  (52.b) 

For � = 0.5 �� 1 

 
Figure 10: The Equivalent Element under Triangular Load  

3.4 Inelastic Second-Order Secant and Tangent 
Relations 

In the present work, the elastic second order relations 
have been presented in Section 2, while in Section 3.3 the 
inelastic first order relations have been presented. To 
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provide expressions that can include inelastic second 
order stiffness and fixed end moment, a technique of 
extraction and replacing is going to be considered. This 
technique was used previously in [49]. To get inelastic 
second order relations, two steps are going to be 
performed. The first is finding elastic second order 
relations, as provided in Section 2, these relations can be 
separated into first order and second order terms. The 
second step is finding the inelastic first order relations for 
the degraded member, as provided in Section 3.2, and 
replacing them instead of the previously separated elastic 
first order terms.  

So, the bending coefficients in Eq. 9 and Eq. 10 can 
be modified by subtracting the elastic first order stiffness 
terms 4���/� and 2���/� and replacing them by the 
inelastic first order coefficients ����, ����, and ���� in 
Eq. 40 to Eq. 42. The same for the elastic conventional 
fixed end moment which is going to be replaced with the 
fixed end moment for degraded member in Eq. 42 and 
Eq. 43, deduced in Section 3.3, corresponding to the load 
shape. So, the secant relations reach the forms in Eq. 55 
and Eq. 56  

��� = ����� + �������� + ����� +

�������� + ����� + ����  

 

(55) 

��� = ����� + �������� + ����� + ��������

− ����� + ���� 
(56) 

 

Where, the coefficients ����, ����, and ���� are 
calculated using the formulas from Eq. 40 to Eq. 42. 
While the factors ����, and ���� are calculated using 
the formulas in Eq. 43 and Eq. 44 with the appropriate 
���� and ���� depending on the load shape. The 
calculation of the second order term ����� is detailed in 
Section 2. The factors ���� and ���� are shown in Eq. 57 
and Eq. 58. The terms related to second order effects 
employ an equivalent value for ���  of the degraded 
member as ����� which has been discussed in detail in 
[49]. The used value for ����� is considered to be the 
elastic rigidity in the present research.  
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Regarding the formulation of tangent stiffness matrix, 
Structure tangent stiffness matrix can be assembled as 
�� = ∑ �(�� ��

� ��������� )�� , where matrices [T] and 
[L] are to form the [12×12] matrix and to rotate the 
element from local to global coordinates, respectively. 
The matrix �� and matrix T are presented in the 
appendix. The matrix L for rotating the element can be 
found in [26]. 

4 ANALYSIS PROCEDURE 

4.1 Modelling Distributed plasticity 

The present work aims to model steel frame members 
using one beam-column element for each member. 
Usually, researchers use concentrated plasticity approach 
for one element per member analysis. The current 
research assumes plasticity to be distributed along the 
member and trace this plasticity along the analysis 
process. Multiple cross sections along the span are going 
to be monitored along the analysis process. After 
calculating nodal displacements and forces for each load 
iteration, the applied forces on each monitored section are 
calculated using the member nodal forces, shape function, 
and span loads. The calculated actions on each monitored 
section are employed to evaluate the state of the cross 
section whether there is any yielding found or not.  

The evaluation of yielding across the area of cross 
sections has been investigated by many researchers and 
various techniques were presented. The research studies 
in [44], [45], [47], [48] suggested formulas to calculate 
the tangent rigidity of the cross section without dividing 
the cross sections to many fibers. Formulas are available 
for different cross sections under different loading 
conditions including or neglecting residual stresses. The 
present research employs these formulas for the 
evaluation of cross sections during the analysis process, 
which means the whole analysis procedure is based on 
closed form solution and direct substitutions in previously 
deduced equations without additional numerical 
integrations.  
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Figure 11: Analysis Flow Chart 

At this point the beam-column element has multiple 
monitored sections and each of them has its own tangent 
rigidity during the inelastic stage of the analysis. That can 
transform the element to be consist of multiple internal 
segments with different values of ���������, and each 
internal segment starts and end with a monitored section. 
The internal segment’s tangent rigidity is considered to be 
the average value of the values at the start and end 
monitored sections.  The derivations in Section 3 were 
prepared based on the beam column element with 
multiple internal segments each of them has its own 
rigidity. That can trace plasticity spread along the 
member accurately. 

4.2  Analysis Scheme 

A finite element software was prepared to solve steel 
frames based on the numerical model of the present 
paper. Figure 11 illustrates the analysis procedure used in 
this program. It must be declared that, converting span 
loads to the equivalent nodal forces is already performed 
in the appropriate step of the analysis, either while 
updating the external load vectors or while calculating 
internal force vectors for equilibrium check. Each time 
these fixed end forces calculated; they are based on the 
last updated values of ��. This ongoing updating of the 
values of �� helps to maintain the accuracy of tracing 
plasticity spread and also to achieve rapid convergence of 
the analysis. 

Throughout the analysis procedure, the 
incremental equilibrium equation will be as declared in 
Eq. 59 to start iteration number i at step number j.  

 

[����
�

] ����
�
� = ����� �

�
� − ����� ���

�
�     (59) 

  

where, [����
�

] is the last updated tangent stiffness matrix 

from iteration number i-1. And ����
�
� is the generated 

unbalanced displacement vector after solving the 

equilibrium condition. The vector ������
�

� is the last 

updated internal force vector from previous iteration. 

The vector ����� �
�

� is the external force vector, including 

fixed end forces, which can be updated each iteration as 
the following. 

 

����� �
�

� = ����� ���
�

� + ���
�
 {�����

^ }  (45) 

  where, {�����
^ } is the reference load vector, 

including updating fixed end forces. The factor ���
�  is the 

load increment factor for the jth iteration in the ith 
increment, which is calculated according to the adopted 
nonlinear solution strategy depending on the vectors 
from previous iteration. 

 

5 NUMERICAL EXAMPLES 

This section contains various numerical verifications 
to check the accuracy and ability of the present work. 
There were no many available numerical examples for 
plastic analysis of steel frames loaded along the 
elements’ span. The available benchmark frames were 
solved using the proposed model. Also, additional novel 
examples were prepared for different types of loading.  

5.1 Vogel’s Multi Story Plan Frame 

The well-known six story frame, in Figure 12, 
presented by Vogel [55] and solved using plastic zone 
methodology. The steel modulus of elasticity was 
assumed as 205 GPa, and the yield stress as 235 MPa. 
The columns of frame are exposed to out of plumpness as 
initial imperfection, with an inclination 1/450 for the six 
stories. 

Many researchers used this example as a calibrating 
frame for their own models such as the work in [56] and 
[57], also the work in [58] resolved the frame but 
neglecting the residual stresses. Usually, the researchers 
divide the beams into more than one element to models 
span uniform loads as nodal loads, such as [56], [57], and 
[49]. The present research solves this dilemma as the 
proposed element allows span loads without dividing the 
member also the plasticity spread can be captured and 
represented. The frame was solved in the current work, 
including and excluding residual stress effects, using only 
ingle beam-column element for each member. The results 
are presented in Figure 13 and Figure 14 show the 
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accuracy of the presented model in tracing geometric and 
material nonlinear manner.   

 

 
Figure 12: Vogel’s Six Story Frame 

  

 

Figure 13: Load Displacement Curve for Vogel’s Frame 
Considering Residual Stresses 

 

 
Figure 14: Load Displacement Curve for Vogel’s Frame 

without Residual Stresses 

5.2 Two Bay Four Story Plan Frame 

The two bay four story frame shown in Figure 15 was 
analyzed in many researches as a benchmark frame for 
inelastic analysis. The steel material of the frame has 200 
GPa and 250 MPa for elastic modulus and yield stress, 
respectively. The frame was solved by Doan-Ngoc et al. 
[59] and by Kukreti and Zhou [60]. In the present work, 
the frame was modeled using only one element for each 
member, unlike the work in [59] which divided the beams 
into two elements. The analysis results, shown in Figure 
16, illustrate the accuracy of the deduced model in tracing 
geometric and material nonlinearities.  

 
Figure 15: Geometry of Two Bay Four Story Frame
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Figure 16: Load Displacement Curve for Two Bay Four 

Story Frame 

5.3 Two Story Space Frame Under Span 
Loads 

Coung and Kim [61] presented a solved example for 
two story space frame loaded with concentrated forces at 
nodes only. They have used a fine mesh of shell elements 
to get a reference solution via ABAQUS software. The 
present work is related to frames with lateral span loads, 
so the geometry of the example from [61] has been 
employed but the loads are different. Figure 17 show the 
geometry of the space frame which has a cross section H 
150x160x10x6.5, with steel material properties 221 GPa 
and 320 MPa for the elastic modulus and yield stress, 
respectively. The frame has been modelled in the present 
work using a fine mesh of shell elements including the 
same geometric initial out straightness detailed in [61] 
and the initial residual stresses from ECCS [62]. The 
performed ABAQUS model, in Figure 19, prevented 
effects of joint local deformation by using stiffeners with 
higher grade steel material. To calibrate our mode, the 
frame was solved firstly under the same nodal loads from 
[61] and the results were identical.  

 
Figure 17: Two Story Space frame with H-Shaped Section 

 
Figure 18: Loads on Two Story Space frame with H-Shaped 

Section 
The frame has been solved using the prepared 

ABAQUS model in the present research under the 
loading condition shown in Figure 18, which includes 
various of loading shapes. The distribution of stresses 
along the frame member is shown in Figure 21, which 
illustrates the plasticity spread at many positions along 
the span rather than members’ ends. After that, the frame 
has been solved using the proposed model in the current 
research based on beam-column element. Only one 
element per each member was used in the analysis. Figure 
20 shows the resulting problem size un ABAQUS, which 
is compared to the proposed model of twelve nodes only. 
The proposed beam-column model has the ability to 
model and trace distributed plasticity, and also allows for 
lateral loads along the member span. For the members 
with two different loads, the principles of super position 
were employed by tacking the contribution of each load 
and summing them either in first or second order 
parameters and also in calculating the bowing terms. 
Neglecting the interaction between the forces on the 
second order parameters of each other’s seems to have no 
significant effect on the analysis results, which can be 
attributed to the small strain assumption.  
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(a) 

 

 
(b) 

 
Figure 19: Modelling of Two-Story Space Frame by 
ABAQUS; a) General View of Frame, b) Stiffeners at 
Frame Joints 

 
The load displacement curve is compared from  the 

solution by ABAQUS model and the proposed beam-
column model in Figure 22 which assure the accuracy of 
the proposed model in tracing geometric and material 
nonlinearities even with distributed plasticity and member 
span loads. 

 
Figure 20: Data from ABAQUS model  

 

 
Figure 21: Stress Distribution at Frame Members 

 

 
(a) 

 
(b) 

Figure 22: Load Displacement Curve for Two-Story Space 
Frame; a) Displacement at First Floor, b) Displacement at 
Roof  
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5.4 Cantilever Columns  

To check the proposed model for different loading 
shapes, a cantilever example was prepared using 
ABAQUS software. A fine mesh of shell elements 
was used in modelling to represent inelasticity and 
second order effects accurately.  

 Cantilever with Uniform Distributed 
Lateral Load 

 
The cantilever member in Figure 23 has a cross 

section of H 257 x 254 x 9.4 x 15.6 with a steel material 
having properties of 400 MPa and 200 GPa for yield 
stress and Yong’s Modulus, respectively. The initial 
residual stresses were considered according to the 
proposed by (ECCS)[62]. Two different cases of loading 
were considered to check the model under different 
contribution of geometric and material nonlinearities, and 
the column is bent about its major axis. The load 
displacement curve, in Figure 24, shows the analysis 
results of the proposed one element per member model 
and the fine mesh model by ABAQUS.  

 

 
Figure 23: Cantilever under Lateral Uniform Load 

 

 
Figure 24: Load-Displacement Curve for Cantilever under 
Lateral Uniform Load 
 

 

 Cantilever with Triangular Lateral 
Load 

 
The cantilever member in Figure 25 has the same 

cross section and steel material of the column in Section 
5.4.1. However, the column is subjected to triangular 
span load in addition to loads at tip point.   
 

 
Figure 25: Cantilever under Lateral Triangular Load 

 
The initial residual stresses by (ECCS)[62]were 

considered, and the analysis is performed using both of 
the proposed beam column element and ABAQUS shell 
elements. The comparison between the results is declared 
in Figure 26, which illustrates the ability of the proposed 
model to trace plasticity spread and second order effects.  

 

 
Figure 26: Load-Displacement Curve for Cantilever under 

Lateral Uniform Load 
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Figure 27 shows both unloaded and loaded state of the 
column. The unloaded state includes initial residual 
stresses only, but after loading process the plasticity 
spread can be noted along the span of the member and 
that cannot be captured using the plastic hinge approach. 

 
Figure 27: Stress Distribution at Cantilever Column Before 

and After Loading 

6 CONCLUSION 

This work presented a novel beam-column element 
for distributed plasticity inelastic analysis of steel frames. 
The proposed model was based on the one element per 
member approach and modeled geometric and material 
nonlinear effects. The change of element stiffness matrix 
due to the plasticity spread along the member and the 
geometric nonlinearity has been modeled, and the used 
analysis procedure allowed to trace these effects 
throughout the analysis steps.  A major contribution of 
this work is allowing span transverse loads to be included 
in the analysis without dividing the frame member to 
many elements. New formulas for calculating fixed end 
moments due to numerous shapes of span loads have 
been presented. These formulas take into consideration 
the redistribution of fixed end moments due to the 
distributed plasticity. For second order parameters related 
to span loads, new formulas for different shapes of loads 
have been found based on the fifth order displacement 
function in addition to those previously presented in [50].  

 
An appropriate analysis procedure has been prepared 

and was employed in a finite element program based on 

the proposed model. Numerous examples have been 
solved using the proposed model. In addition to the 
available benchmarked frames, novel solved examples 
have been prepared and solved to check the reliability of 
the model in case of different shapes of loads. The 
proposed model showed sufficient accuracy in modeling 
steel frames in nonlinear analysis. The one element per 
member approach helped in saving time of the analysis 
without compromising the accuracy of solutions.   

 

7 APPENDECIES 

 
A. 1- List of symbols 

�    Displacement �� the element 
�� Bending moment about Z  axis  
�� Bending moment about Y axis 

P     Axial force  
�� Flexural rotation around � axis 

�� Flexural rotation around � axis 

�  Distance parameter ratio  
�� Axial rigidity 
�  Axial force parameter 
��� Term of minor bending stiffness 
��� Term of major bending stiffness  

��  bowing function 1 
��  bowing function 2 
�� bowing function due to span load 1 
�� bowing function due to span load 2 
�� Yield stress  

 ��  Bending rigidity about �  axis for the member 
��� Bending rigidity about � axis for the member 

���� Internal segment’s rigidity about �  axis 
���� Internal segment’s rigidity about �  axis 

��� First-Order stiffness about �  axis 
��� First-Order stiffness about �  axis 

��� Second-Order bending stiffness about �  axis  

���  Second-Order bending stiffness about �  axis  

��� Coupling term  
��� Coupling term  
��        Coupling term  
��  Torsional rigidity 
�     Torsional stiffness  
[��] Tangent stiffness matrix  

[�] Transformation matrix to 12x12 
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A. 2- Matrices formulation 
 

[T] =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

0
1

�
0 0 0 1 0 −

1

L
0 0 0 0

0
1

L
0 0 0 0 0 −

1

L
0 0 0 1

0 0 −
1

L
0 1 0 0 0

1

L
0 0 0

0 0 −
1

L
0 0 0 0 0

1

L
0 1 0

0 0 0 −1 0 0 0 0 0 1 0 0

−1 0 0 0 0 0 1 0 0 0 0 0

 

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

       (�. 1)

 

T is the matrix transforms [6x6] stiffness matrix to [12x12] including shear stiffness in corotational coordinating 
approach. 
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[��] tangent stiffness matrix in corotational formulation.  
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